591 research outputs found

    Observing facilities at the European Southern Observatory (ESO) in Chile for cometary observations

    Get PDF
    The (ESO) is located on the mountain La Silla (geographical coordinates: 4h42m55s10 west, -29 deg 15' 25".8 south, 2400 m elevation. The size of the telescopes ranges from a 40 cm Astrograph to the 3.6 m Richey-Chretien telescope. Future telescopes are discussed: a 2.2 m RC-Telescope which will be identical with the German 2.2 m telescope on Calor Alto in SE-Spain, and a 3.5 m telescope, the New Technology Telescope. In addition to these telescopes, a great number of auxiliary instrumentation are operational. Because ESO has to serve all requests of the visiting astronomers these instruments are designed for very different applications. The telescopes and auxiliary instruments that are especially suited for cometary observations are discussed. The dicussion is divided into three parts: photography, photometry-polarimetry and spectroscopy

    Theory of Chiral Order in Random Copolymers

    Full text link
    Recent experiments have found that polyisocyanates composed of a mixture of opposite enantiomers follow a chiral ``majority rule:'' the chiral order of the copolymer, measured by optical activity, is dominated by whichever enantiomer is in the majority. We explain this majority rule theoretically by mapping the random copolymer onto the random-field Ising model. Using this model, we predict the chiral order as a function of enantiomer concentration, in quantitative agreement with the experiments, and show how the sharpness of the majority-rule curve can be controlled.Comment: 13 pages, including 4 postscript figures, uses REVTeX 3.0 and epsf.st

    Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes

    Full text link
    We present a general theory for the equilibrium structure of cylindrical tubules and helical ribbons of chiral lipid membranes. This theory is based on a continuum elastic free energy that permits variations in the direction of molecular tilt and in the curvature of the membrane. The theory shows that the formation of tubules and helical ribbons is driven by the chirality of the membrane. Tubules have a first-order transition from a uniform state to a helically modulated state, with periodic stripes in the tilt direction and ripples in the curvature. Helical ribbons can be stable structures, or they can be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and epsf.st

    Early development and tuning of a global coupled cloud resolving model, and its fast response to increasing CO2

    Get PDF
    Since the dawn of functioning numerical dynamical atmosphere- and ocean models, their resolution has steadily increased, fed by an exponential growth in computational capabilities. However, because resolution of models is at all times limited by computational power a number of mostly small-scale or micro-scale processes have to be parameterised. Particularly those of atmospheric moist convection and ocean eddies are problematic when scientists seek to interpret output from model experiments. Here we present the first coupled ocean-atmosphere model experiments with sufficient resolution to dispose of moist convection and ocean eddy parameterisations. We describe the early development and discuss the challenges associated with conducting the simulations with a focus on tuning the global mean radiation balance in order to limit drifts. A four-month experiment with quadrupled CO2 is then compared with a ten-member ensemble of low-resolution simulations using MPI-ESM1.2-LR. We find broad similarities of the response, albeit with a more diversified spatial pattern with both stronger and weaker regional warming, as well as a sharpening of precipitation in the inter tropical convergence zone. These early results demonstrate that it is already now possible to learn from such coupled model experiments, even if short by nature

    Order and Frustration in Chiral Liquid Crystals

    Full text link
    This paper reviews the complex ordered structures induced by chirality in liquid crystals. In general, chirality favors a twist in the orientation of liquid-crystal molecules. In some cases, as in the cholesteric phase, this favored twist can be achieved without any defects. More often, the favored twist competes with applied electric or magnetic fields or with geometric constraints, leading to frustration. In response to this frustration, the system develops ordered structures with periodic arrays of defects. The simplest example of such a structure is the lattice of domains and domain walls in a cholesteric phase under a magnetic field. More complex examples include defect structures formed in two-dimensional films of chiral liquid crystals. The same considerations of chirality and defects apply to three-dimensional structures, such as the twist-grain-boundary and moire phases.Comment: 39 pages, RevTeX, 14 included eps figure

    Canine leishmaniosis and its relationship to human visceral leishmaniasis in Eastern Uzbekistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Namangan Region in the Pap District, located in Eastern Uzbekistan is the main focus of visceral leishmaniasis (VL) in Uzbekistan. In total, 28 cases of human VL were registered during 2006-2008 in this region. A study on the epidemiology of VL in this area was carried out in 2007-2008 in the villages of Chodak, Oltinkan, Gulistan and Chorkesar located at elevations of 900-1200 above sea level.</p> <p>Results</p> <p>A total of 162 dogs were tested for <it>Leishmania </it>infection. Blood was drawn for serology and PCR. When clinical signs of the disease were present, aspirates from lymph nodes and the spleen were taken. Forty-two dogs (25.9%) had clinical signs suggestive of VL and 51 (31.5%) were sero-positive. ITS-1 PCR was performed for 135 dogs using blood and tissue samples and 40 (29.6%) of them were PCR-positive. Leishmanial parasites were cultured from lymph node or spleen aspirates from 10 dogs.</p> <p>Eight <it>Leishmania </it>strains isolated from dogs were typed by multi-locus microsatellite typing (MLMT) and by multilocus enzyme electrophoretic analysis (MLEE), using a 15 enzyme system. These analyses revealed that the strains belong to the most common zymodeme of <it>L. infantum</it>, i.e., MON-1, and form a unique group when compared to MON-1 strains from other geographical regions.</p> <p>Conclusions</p> <p>The data obtained through this study confirm the existence of an active focus of VL in the Namangan region of Uzbekistan. The fact that <it>L. infantum </it>was the causative agent of canine infection with typical clinical signs, and also of human infection affecting only infants, suggests that a zoonotic form of VL similar in epidemiology to Mediterranean VL is present in Uzbekistan.</p

    BtubA-BtubB Heterodimer Is an Essential Intermediate in Protofilament Assembly

    Get PDF
    BACKGROUND:BtubA and BtubB are two tubulin-like genes found in the bacterium Prosthecobacter. Our work and a previous crystal structure suggest that BtubB corresponds to alpha-tubulin and BtubA to beta-tubulin. A 1:1 mixture of the two proteins assembles into tubulin-like protofilaments, which further aggregate into pairs and bundles. The proteins also form a BtubA/B heterodimer, which appears to be a repeating subunit in the protofilament. METHODOLOGY/PRINCIPAL FINDINGS:We have designed point mutations to disrupt the longitudinal interfaces bonding subunits into protofilaments. The mutants are in two classes, within dimers and between dimers. We have characterized one mutant of each class for BtubA and BtubB. When mixed 1:1 with a wild type partner, none of the mutants were capable of assembly. An excess of between-dimer mutants could depolymerize preformed wild type polymers, while within-dimer mutants had no activity. CONCLUSIONS:An essential first step in assembly of BtubA + BtubB is formation of a heterodimer. An excess of between-dimer mutants depolymerize wild type BtubA/B by sequestering the partner wild type subunit into inactive dimers. Within-dimer mutants cannot form dimers and have no activity

    The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514)

    Get PDF
    Classical numerical models for the global atmosphere, as used for numerical weather forecasting or climate research, have been developed for conventional central processing unit (CPU) architectures. This hinders the employment of such models on current top-performing supercomputers, which achieve their computing power with hybrid architectures, mostly using graphics processing units (GPUs). Thus also scientific applications of such models are restricted to the lesser computer power of CPUs. Here we present the development of a GPU-enabled version of the ICON atmosphere model (ICON-A), motivated by a research project on the quasi-biennial oscillation (QBO), a global-scale wind oscillation in the equatorial stratosphere that depends on a broad spectrum of atmospheric waves, which originates from tropical deep convection. Resolving the relevant scales, from a few kilometers to the size of the globe, is a formidable computational problem, which can only be realized now on top-performing supercomputers. This motivated porting ICON-A, in the specific configuration needed for the research project, in a first step to the GPU architecture of the Piz Daint computer at the Swiss National Supercomputing Centre and in a second step to the JUWELS Booster computer at the Forschungszentrum Jülich. On Piz Daint, the ported code achieves a single-node GPU vs. CPU speedup factor of 6.4 and allows for global experiments at a horizontal resolution of 5 km on 1024 computing nodes with 1 GPU per node with a turnover of 48 simulated days per day. On JUWELS Booster, the more modern hardware in combination with an upgraded code base allows for simulations at the same resolution on 128 computing nodes with 4 GPUs per node and a turnover of 133 simulated days per day. Additionally, the code still remains functional on CPUs, as is demonstrated by additional experiments on the Levante compute system at the German Climate Computing Center. While the application shows good weak scaling over the tested 16-fold increase in grid size and node count, making also higher resolved global simulations possible, the strong scaling on GPUs is relatively poor, which limits the options to increase turnover with more nodes. Initial experiments demonstrate that the ICON-A model can simulate downward-propagating QBO jets, which are driven by wave–mean flow interaction
    corecore