5 research outputs found

    Constraints on simulated past Arctic amplification and lapse rate feedback from observations

    Get PDF
    The Arctic has warmed more rapidly than the global mean during the past few decades. The lapse rate feedback (LRF) has been identified as being a large contributor to the Arctic amplification (AA) of climate change. This particular feedback arises from the vertically non-uniform warming of the troposphere, which in the Arctic emerges as strong near-surface and muted free-tropospheric warming. Stable stratification and meridional energy transport are two characteristic processes that are evoked as causes for this vertical warming structure. Our aim is to constrain these governing processes by making use of detailed observations in combination with the large climate model ensemble of the sixth Coupled Model Intercomparison Project (CMIP6). We build on the result that CMIP6 models show a large spread in AA and Arctic LRF, which are positively correlated for the historical period of 1951–2014. Thus, we present process-oriented constraints by linking characteristics of the current climate to historical climate simulations. In particular, we compare a large consortium of present-day observations to co-located model data from subsets that show a weak and strong simulated AA and Arctic LRF in the past. Our analyses suggest that the vertical temperature structure of the Arctic boundary layer is more realistically depicted in climate models with weak (w) AA and Arctic LRF (CMIP6/w) in the past. In particular, CMIP6/w models show stronger inversions in the present climate for boreal autumn and winter and over sea ice, which is more consistent with the observations. These results are based on observations from the year-long Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic, long-term measurements at the Utqiaġvik site in Alaska, USA, and dropsonde temperature profiling from aircraft campaigns in the Fram Strait. In addition, the atmospheric energy transport from lower latitudes that can further mediate the warming structure in the free troposphere is more realistically represented by CMIP6/w models. In particular, CMIP6/w models systemically simulate a weaker Arctic atmospheric energy transport convergence in the present climate for boreal autumn and winter, which is more consistent with fifth generation reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA5). We further show a positive relationship between the magnitude of the present-day transport convergence and the strength of past AA. With respect to the Arctic LRF, we find links between the changes in transport pathways that drive vertical warming structures and local differences in the LRF. This highlights the mediating influence of advection on the Arctic LRF and motivates deeper studies to explicitly link spatial patterns of Arctic feedbacks to changes in the large-scale circulation

    Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project

    Get PDF
    Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project has been established in 2016. It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, ship-borne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data

    Constraints on simulated past Arctic amplification and lapse-rate feedback from observations

    Get PDF
    The Arctic has warmed much more than the global mean during past decades. The lapse-rate feedback (LRF) has been identified as large contributor to the Arctic amplification (AA) of climate change. This particular feedback arises from the vertically non-uniform warming of the troposphere, which in the Arctic emerges as strong near-surface, and muted free-tropospheric warming. Stable stratification and meridional energy transport are two characteristic processes that are evoked as causes for this vertical warming structure. Our aim is to constrain these governing processes by making use of detailed observations in combination with the large climate model ensemble of the 6th Coupled Model Intercomparison Project (CMIP6). We build on the result that CMIP6 models show a large scatter in Arctic LRF and AA, which are positively correlated for the historical period 1951–2014. Thereby, we present process-oriented constraints by linking characteristics of the current climate to historical climate simulations. In particular, we compare a large consortium of present-day observations to co-located model data from subsets with weak and strong simulated AA and Arctic LRF in the past. Our results firstly suggest that local Arctic processes mediating the lower thermodynamic structure of the atmosphere are more realistically depicted in climate models with weak Arctic LRF and AA (CMIP6/w) in the past. In particular, CMIP6/w models show stronger inversions at the end of the simulation period (2014) for boreal fall and winter, which is more consistent with the observations. This result is based on radiosonde observations from the year-long MOSAiC expedition in the central Arctic, together with long-term radio soundings at the Utqiaqvik site in Alaska, USA, and dropsonde measurements from aircraft campaigns in the Fram Strait. Secondly, remote influences that can further mediate the warming structure in the free troposphere are more realistically represented by models with strong simulated Arctic LRF and AA (CMIP6/s) in the past. In particular, CMIP6/s models systemically simulate a stronger Arctic energy transport convergence in the present climate for boreal fall and winter, which is more consistent with reanalysis results. Locally, we find links between changes in transport pathways and vertical warming structures that favor a positive LRF in the CMIP6/s simulations. This hints to the mediating influence of advection on the Arctic LRF. We emphasise that one major attempt of this work is to give insights in different perspectives on the Arctic LRF. We present a variety of contributions from a large collaborative research consortium to ultimately find synergy among them in support of advancing our understanding of the Arctic LRF
    corecore