560 research outputs found

    The direct determination of sucrose in the presence of reducing sugars

    Get PDF
    Cover title.Mode of access: Internet

    The coloring matter of cane juices

    Get PDF
    Cover title.Mode of access: Internet

    Double-resonant fast particle-wave interaction

    Get PDF
    In future fusion devices fast particles must be well confined in order to transfer their energy to the background plasma. Magnetohydrodynamic instabilities like Toroidal Alfv\'en Eigenmodes or core-localized modes such as Beta Induced Alfv\'en Eigenmodes and Reversed Shear Alfv\'en Eigenmodes, both driven by fast particles, can lead to significant losses. This is observed in many ASDEX Upgrade discharges. The present study applies the drift-kinetic HAGIS code with the aim of understanding the underlying resonance mechanisms, especially in the presence of multiple modes with different frequencies. Of particular interest is the resonant interaction of particles simultaneously with two different modes, referred to as 'double-resonance'. Various mode overlapping scenarios with different q profiles are considered. It is found that, depending on the radial mode distance, double-resonance is able to enhance growth rates as well as mode amplitudes significantly. Surprisingly, no radial mode overlap is necessary for this effect. Quite the contrary is found: small radial mode distances can lead to strong nonlinear mode stabilization of a linearly dominant mode.Comment: 12 pages, 11 figures; Nuclear Fusion 52 (2012

    Genome editing for inborn errors of metabolism: advancing towards the clinic

    Get PDF
    Abstract Inborn errors of metabolism (IEM) include many disorders for which current treatments aim to ameliorate disease manifestations, but are not curative. Advances in the field of genome editing have recently resulted in the in vivo correction of murine models of IEM. Site-specific endonucleases, such as zinc-finger nucleases and the CRISPR/Cas9 system, in combination with delivery vectors engineered to target disease tissue, have enabled correction of mutations in disease models of hemophilia B, hereditary tyrosinemia type I, ornithine transcarbamylase deficiency, and lysosomal storage disorders. These in vivo gene correction studies, as well as an overview of genome editing and future directions for the field, are reviewed and discussed herein

    Bacterial contamination of anesthesia machines’ internal breathing-circuit-systems

    Get PDF
    Background: Bacterial contamination of anesthesia breathing machines and their potential hazard for pulmonary infection and cross-infection among anesthetized patients has been an infection control issue since the 1950s. Disposable equipment and bacterial filters have been introduced to minimize this risk. However, the machines’ internal breathing-circuit-system has been considered to be free of micro-organisms without providing adequate data supporting this view. The aim of the study was to investigate if any micro-organisms can be yielded from used internal machines’ breathing-circuit-system. Based on such results objective reprocessing intervals could be defined

    Long-term photometric behaviour of XZ Dra Binarity or magnetic cycle of a Blazhko type RRab star

    Full text link
    The extended photometry available for XZ Dra, a Blazhko type RR Lyrae star, makes it possible to study its long-term behavior. It is shown that its pulsation period exhibit cyclic, but not strictly regular variations with approx. 7200 d period. The Blazhko period (approx. 76 d) seems to follow the observed period changes of the fundamental mode pulsation with dP_B/dP_0=7.7 x 10^4 gradient. Binary model cannot explain this order of period change of the Blazhko modulation, nevertheless it can be brought into agreement with the O-C data of the pulsation. The possibility of occurrence of magnetic cycle is raised.Comment: 13 pages, 11 figures (submitted to A&A

    Detailed Performance Loss Analysis of Silicon Solar Cells using High-Throughput Metrology Methods

    Full text link
    In this work, novel, high-throughput metrology methods are used to perform a detailed performance loss analysis of approximately 400 industrial crystalline silicon solar cells, all coming from the same production line. The characterization sequence includes a non-destructive transfer length method (TLM) measurement technique featuring circular TLM structures hidden within the busbar region of the cells. It also includes a very fast external quantum efficiency and reflectance measurement technique. More traditional measurements, like illuminated current-voltage, Suns-VOC, and photoluminescence imaging are also used to carry out the loss analysis. The variance of the individual loss parameters and their impact on cell performance are investigated and quantified for this large group of industrial solar cells. Some important correlations between the measured loss parameters are found. The nature of these distributions and correlations provide important insights about loss mechanisms in a cell and help prioritize efforts to optimize the performance of the production line.Comment: 5 pages, 6 figures, conferenc
    • …
    corecore