3 research outputs found

    Transcriptional and translational dynamics of the human heart

    Get PDF
    Die Genexpression wurde bisher hauptsächlich auf Transkriptions- und Proteinebene untersucht, wobei der Einfluss der Translation, die die Proteinhäufigkeit direkt beeinflusst, weitgehend außer Acht gelassen wurde. Um diese Rolle besser zu verstehen, habe ich Ribosomen-Profiling-Daten (Ribo-seq) verwendet, um die Translationsregulation zu untersuchen und neue Translationsvorgänge in 65 linksventrikulären Proben von DCM-Patienten im Endstadium und 15 Nicht-DCM-Kontrollen zu identifizieren. Dieser Datensatz half dabei, die Transkriptions- und Translationsregulation zwischen erkrankten und nicht betroffenen menschlichen Herzen zu sezieren und enthüllte Gene und Prozesse, die rein unter Translationskontrolle stehen. Darüber hinaus habe ich neue kardiale Proteine vorhergesagt, die von langen nicht-kodierenden RNAs (lncRNAs) und zirkulären RNAs (circRNAs) translatiert werden. Computergestützte Analysen dieser evolutionär jungen Proteine legten eine Beteiligung an verschiedenen molekularen Prozessen nahe, mit einer besonderen Anreicherung für den mitochondrialen Energiestoffwechsel. Schließlich identifizierte ich RNA-bindende Proteine (RBPs), deren Expression die Menge der Ziel-mRNA oder die Frequenz der Translationseffizienz (TE) beeinflusst. Für eine Untergruppe von 21 RBPs habe ich die Regulation auf beiden quantitativen Merkmalen beobachtet, was zu einer unterschiedlichen mechanistischen Basis der Expressionskontrolle für unabhängige Gensätze führte. Obwohl die genaue Umschaltung der RBP-Funktion wahrscheinlich durch eine Kombination von mehreren Faktoren erreicht wird, haben wir für drei Kandidaten eine starke Abhängigkeit von der Zielgenlänge und der 5'-UTR-Struktur beobachtet. Diese Arbeit präsentiert einen Katalog von neu identifizierten Translationsereignissen und einen quantitativen Ansatz zur Untersuchung der Translationsregulation im gesunden und kranken menschlichen Herzen.Gene expression has primarily been studied on transcriptional and protein levels, largely disregarding the extent of translational regulation that directly influences protein abundance. To elucidate its role, I used ribosome profiling (Ribo-seq) data, obtained through ribosome profiling, to study translational regulation and identify novel translation events in 65 left ventricular samples of end-stage DCM patients and 15 non-DCM controls. This dataset helped dissect transcriptional and translational regulation between diseased and unaffected human hearts, revealing genes and processes purely under translational control. These would have remained undetected by only looking at the transcriptional level. Furthermore, I predicted novel cardiac proteins translated from long non-coding RNAs (lncRNAs) and circRNAs. Computational analysis of these evolutionary young proteins suggested involvement in diverse molecular processes with a particular enrichment for mitochondrial processes. Finally, I identified RNA-binding proteins (RBPs) whose expression influences target mRNA abundance or translational efficiency (TE) rates. For a subset of 21 RBPs, I have observed regulation on both quantitative traits, which resulted in different mechanistic basis expression control for independent sets of genes. Though the precise switch in RBP function is likely achieved by a combination of multiple factors, for three candidates we have observed a strong dependency on target length and 5’ UTR structure. This work presents a catalogue of newly identified translation events and a quantitative approach to study translational regulation in the healthy and failing human heart

    A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion.

    Get PDF
    BackgroundLittle is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines.ResultsWe identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates.ConclusionsWe show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease

    EOSC-Life Report on the work of the Open Call Projects

    No full text
    This Deliverable 3.3 is a report on the Digital Life Sciences Open Call and two Internal Calls organised by EOSC-Life WP3. The organisation of these Calls followed the successful integration and support of 8 Demonstrator projects&nbsp;which provided the first concrete use cases in the initial phase of EOSC-Life. The three Calls overall supported 11 scientific user projects, selected to facilitate integration of concrete use-cases across Life Sciences domains into the European Open Science Cloud (EOSC)&nbsp;framework. Through the Calls, the practical goal was to facilitate co-creation of an open, digital collaborative space for life science research by developing FAIR&nbsp;tools, workflows, resources, infrastructures, and guidelines together with the EOSC-Life RIs experts and communities. We report in this Deliverable the following achievements: Organisation of the EOSC-Life Open and Internal Calls; Integrating and training the EOSC-Life WP3 Open Call&nbsp;and Internal Call&nbsp;project teams in EOSC-Life; Activities for connecting project teams with EOSC-Life and LS-RI communities and dissemination of projects outcomes to broader communities; Work done in the individual projects, their results, and impact of developed resources; Recommendations from the EOSC-Life WP3 project teams and the EOSC-Life community for future Open Calls. </ol
    corecore