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Abstract

Gene  expression  has  primarily  been  studied  on  transcriptional  and  protein  levels,  largely

disregarding the extent of translational regulation that directly influences protein abundance.

To elucidate  its  role,  I  used ribosome profiling  (Ribo-seq)  data,  obtained  through ribosome

profiling,  to  study  translational  regulation  and  identify  novel  translation  events  in  65  left

ventricular samples of end-stage DCM patients and 15 non-DCM controls. This dataset helped

dissect  transcriptional  and translational  regulation  between  diseased  and unaffected human

hearts, revealing genes and processes purely under translational control. These would have

remained undetected by only looking at the transcriptional level. Furthermore, I predicted novel

cardiac proteins translated from long non-coding RNAs (lncRNAs) and circRNAs. Translated

lncRNAs  showed sequence  conservation  to  primates,  while  only  a  few candidates  showed

positional  and translation initiation conservation across mammals.  Computational  analysis  of

these evolutionary young proteins suggested involvement in diverse molecular processes with a

particular enrichment for mitochondrial energy metabolism.

Finally,  I  identified  RNA-binding proteins  (RBPs)  whose expression influences target  mRNA

abundance  or  translational  efficiency  (TE)  rates.  Among  the  RBPs  that  influence  TE,  we

identified the muscle-specific splicing factor RBM20 whose switch in isoform production impacts

target  translational  rates.  For  a  subset  of  21  RBPs,  I  have  observed  regulation  on  both

quantitative  traits,  which  resulted  in  different  mechanistic  basis  expression  control  for

independent sets of genes. Though the precise switch in RBP function is likely achieved by a

combination of multiple factors, for three candidates we have observed a strong dependency on

target length and 5’ UTR structure.

This  work  presents  a  catalogue  of  newly  identified  translation  events  and  a  quantitative

approach to study translational regulation in the healthy and failing human heart.
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Zusammenfassung

Die  Genexpression  wurde  bisher  hauptsächlich  auf  Transkriptions-  und  Proteinebene

untersucht,  wobei  der  Einfluss  der  Translation,  die  die  Proteinhäufigkeit  direkt  beeinflusst,

weitgehend außer Acht gelassen wurde.

Um  diese  Rolle  besser  zu  verstehen,  habe  ich  Ribosomen-Profiling-Daten  (Ribo-seq)

verwendet, um die Translationsregulation zu untersuchen und neue Translationsvorgänge in 65

linksventrikulären Proben von DCM-Patienten im Endstadium und 15 Nicht-DCM-Kontrollen zu

identifizieren.  Dieser  Datensatz  half  dabei,  die  Transkriptions-  und  Translationsregulation

zwischen  erkrankten und nicht  betroffenen  menschlichen  Herzen zu  sezieren und enthüllte

Gene  und  Prozesse,  die  rein  unter  Translationskontrolle  stehen.  Diese  wären  unentdeckt

geblieben, wenn man nur die Transkriptionsebene betrachtet hätte. Darüber hinaus habe ich

neue kardiale Proteine vorhergesagt, die von langen nicht-kodierenden RNAs (lncRNAs) und

zirkulären  RNAs  (circRNAs)  translatiert  werden.  Translatierte  lncRNAs  zeigten

Sequenzkonservierung  zu  Primaten,  während  nur  wenige   davon  Positions-  und

Translationsinitiationskonservierung  über  Säugetiere  hinweg  aufwiesen.  Computergestützte

Analysen  dieser  evolutionär  jungen  Proteine  legten  eine  Beteiligung  an  verschiedenen

molekularen  Prozessen  nahe,  mit  einer  besonderen  Anreicherung  für  den  mitochondrialen

Energiestoffwechsel.

Schließlich identifizierte ich RNA-bindende Proteine (RBPs), deren Expression die Menge der

Ziel-mRNA oder die Frequenz der Translationseffizienz (TE) beeinflusst. Unter den RBPs, die

die  TE  beeinflussen,  haben  wir  den  muskelspezifischen  Spleißfaktor  RBM20  identifiziert,

dessen Wechsel in der Isoformproduktion die Translationsrate der gebundenen RNA steuert.

Für eine Untergruppe von 21 RBPs habe ich die Regulation auf beiden quantitativen Merkmalen

beobachtet, was zu einer unterschiedlichen mechanistischen Basis der Expressionskontrolle für

unabhängige  Gensätze  führte.  Obwohl  die  genaue  Umschaltung  der  RBP-Funktion

wahrscheinlich durch eine Kombination von mehreren Faktoren erreicht wird, haben wir für drei

Kandidaten eine starke Abhängigkeit von der Zielgenlänge und der 5'-UTR-Struktur beobachtet.

Diese Arbeit präsentiert einen Katalog von neu identifizierten Translationsereignissen und einen

quantitativen Ansatz zur Untersuchung der Translationsregulation im gesunden und kranken

menschlichen Herzen.
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Introduction

From the genome to the proteome

Deoxyribonucleic acid (DNA) is a double-stranded molecule made of four nitrogen-containing

nucleobases;  adenine  (A),  guanine  (G),  cytosine  (C),  and  thymine  (T).  Its  structure  was

revealed in 1953 by James Watson and Francis Crick, explaining how genetic information is

stored and replicated (Watson & Crick, 1953b, 1953a). Five years later, this discovery was used

to describe how genetic information is transferred from DNA via RNA to the protein, known as

the “central dogma of molecular biology” (Crick, 1958) (Figure 1).

Although the central  dogma of  molecular  biology is under debate  (Camacho, 2021;  Koonin,

2012; Pukkila,  2001), the flow of information is a complex crosstalk between multiple layers

requiring interaction between all molecules besides the ones suggested in the central dogma.

Among these, we find histone modification (Bannister & Kouzarides, 2011), post-transcriptional

modifications such as pre-mRNA splicing  (Wilkinson et  al.,  2020),  transport  (Köhler  & Hurt,

2007) of RNA from the nucleus into the cytosol, RNA stability (Boo & Kim, 2020), translation of

RNA into protein (Hershey et al., 2012), and post-translational modifications (Conibear, 2020).

All these layers are under tight regulatory control, and errors can cause cardiovascular diseases

10

Figure  1:  Drawing of  the  central  dogma by Francis  Crick  in  the

article “On protein synthesis”.

The central  dogma of molecular biology illustrates the flow of  genetic

information from DNA via RNA to protein in living organisms.



(Darling  &  Uversky,  2018),  metabolic  disorders  (Morita  et  al.,  2013),  or  neurodegenerative

diseases  (Fernandopulle et al., 2021).  Along the way from pre-mRNA splicing to degradation

RNA molecules are associated with different RNA-binding proteins (RBPs), position them as

central regulators of gene expression.

Gene expression regulation captured by high-throughput sequencing 

Molecular basis of gene expression regulation by RNA-binding proteins

RNA-binding proteins have been identified as regulators of gene expression across in all levels

of gene expression. The life of a mRNAs transcripts starts with its transcription from the DNA by

RNA Polymerase II (Pol II) in the nucleus  (F. X. Chen et al., 2018). A premature messenger

RNA is bound by RBPs that recruit  the spliceosome to execute splicing.  Alternative splicing

essentially joins selected exons by removing intronic regions in-between  (Hang et al., 2015).

This process which results alternative coding mRNA transcripts is executed by a RBP group

called  splicing  factor  (Brody & Abelson,  1985;  Frendewey & Keller,  1985;  Grabowski  et  al.,

1985; Shi, 2017). Each mature mRNAs is again bound by RBPs that orchestrate the export into

the cytoplasm through nuclear pore complexes (NPC) and protect the 5’cap and the 3’ poly(A)

tails (Carmody & Wente, 2009). In the cytoplasm, RBPs are responsible for the highly sensitive

mRNA translation which starts with the recognition of the 5’ cap, formation of the ribosome and

the actual translation (R. F. Harvey et al., 2018; Moore & von Lindern, 2018) which will be more

extensively introduced downstream in the coming section. For purpose of translation, individual

mRNAs are interconnected with stability and decay by RBPs and other factors. Hereby, 5’cap

and  the  poly(A)  tail  acts  as  not  only  as  regulators  of  mRNA  translation  but  also  prevent

degradation of mRNA by exosomes (Díaz-Muñoz & Turner, 2018). Degradation is induced by

deadenylation of the poly(A) site by polyA ribonuclease (Webster et al., 2019) or decapping by

DCP2  (D’Lima et  al.,  2017;  Erickson et  al.,  2015).  Messenger  RNAs lacking 5’cap site  are

susceptible to 5’-3’-exonuclease degradation. Stable transcripts   on the hand are bound by

PABP and needs to be displaced before initiation  of  mRNA decay  (Schoenberg & Maquat,

2012).
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RNA-protein interaction by CLIP-seq

Interaction of RBPs with their mRNA targets can be measured by UV crosslinking assays (CLIP,

HITS-CLIP, iCLIP, PAR-CLIP, or eCLIP (Hafner et al., 2010; König et al., 2010; Licatalosi et al.,

2008;  Ule  et  al.,  2003;  Van  Nostrand  et  al.,  2016) at  nucleotide  resolution.  This  method

covalently binds RNA to its attached protein. Later, specific antibodies against the protein are

used to immunoprecipitate the RBP-RNA complexes, followed by RNA purification and high-

throughput  sequencing.  After  mapping the sequenced reads to the transcriptome, the exact

RBP-RNA interaction sites can be defined and used for downstream analysis (e.g. target or

motif prediction). Several studies were able to identify binding motifs for splicing factors, such as

12

Figure 2: Schematic overview of REP-mediated post-transcriptional regulation.

RBPs are involved in multiple mechanisms of gene expression regulation. The cover

alternative splicing of premature mRNA which is located in the nucleus, transport of the

spliced transcript into the cytoplasm where it is stabilized or translated into proteins. All

these steps and many more are under tight control of RBPs. 

Adapted from  Blech-Hermoni at al. 2013



NOVA (Ule et al., 2006), FOX (C. Zhang et al., 2008), RBM20 (Maatz et al., 2014), which gave

insight  into how alternatively  spliced exons can influence target  gene expression.  However,

genome-wide annotation of binding sites does not explain the precise regulation of alternative

splicing.  Furthermore,  binding sites are frequently located distant  to the alternatively spliced

exons (Ule et al., 2006). Short motifs that frequently occur across the whole genome give rise to

false-positive signals resulting in strong signals without any functional relevance (Witten & Ule,

2011). A combination of different methods, as has been applied for RBM20 (Maatz et al., 2014),

will help annotate full splicing maps and the affected targets.

Transcriptome analysis using RNA-seq

The development of direct cDNA sequencing, termed RNA-seq (RNA sequencing), has several

advantages over previous methods, including whole-transcriptome coverage and the possibility

of quantifying or identifying novel splicing events (Nagalakshmi et al., 2008). The main idea is to

convert a population of RNA (total or poly(A)+) in cDNA fragments with attached adaptors to

both ends followed by high-throughput sequencing. The cDNA libraries can be sequenced with

several platforms such as the HiSeq4000 by Illumina@, Applied Biosystems SOLiD v4 or Roche

454 Life Science@ (Zhong Wang et al., 2009). Until 2019, over 95% of the published datasets in

the Short  Read Archive (SRA) were generated using Illumina-based platforms  (Stark et  al.,

2019).  Besides  identification  and  quantification  of  whole  transcriptomes,  RNA-seq  provides

single-nucleotide resolution, high dynamic range during quantification, reveals variations (SNPs)

(Cloonan  et  al.,  2008) in  the  transcribed  regions,  has  low  background  noise  and  high

reproducibility (Nagalakshmi et al., 2008).

The  RNA-seq  data  analysis  can  be  subdivided  into  four main  steps.  After  sequencing  the

fragments/reads, FASTQ files including raw reads are usually generated (Cock et al., 2009). In

the first step, the raw reads are mapped to a known reference transcriptome or genome using a

variety of available alignment tools, including TopHat (D. Kim et al., 2013), STAR (Dobin et al.,

2013),  or  HISAT  (D.  Kim  et  al.,  2015).  To  account  for  reads  spanning  exon  boundaries,

previously mentioned tools can perform spliced alignments allowing gaps within reads during

the mapping procedure.

In case transcriptome annotations are incomplete or not available, reads aligned to the genome

can be used to generate de novo transcriptome assemblies. Tools like StringTie (Pertea et al.,

2015) or SOAPdenovo-Trans (Xie et al., 2014) use genome-guided and genome-independent

strategies to generate splicing graph from RNA-seq reads that are used to assemble novel

transcripts.
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In the next step of RNA-seq analysis, mapped reads are assigned to gene features (e.g. exons)

to determine their abundance. Quantification tools like RSEM (B. Li & Dewey, 2011), MMSeq

(Turro et al., 2011), or HTSeq (Anders et al., 2015) can be used for this purpose. All of them

use different quantification strategies and suffer from distinct issues. HTSeq by default discards

many multi-mapping reads or those overlapping several exons. This bias may result in lower

expression  quantification  of  homologous  or  overlapping  genes.  Decision  on  the  preferred

quantification  tool  may have a  considerable  impact  on the final  quantification  as has been

shown previously (Robert & Watson, 2015; Williams et al., 2017), making it the most critical step

in RNA-seq analysis procedure with a significant impact on all downstream analysis steps.

After quantification of the RNA-seq data, poorly expressed genes or transcripts are filtered out

and the remaining ones are normalized to account for differences in sample size, expression,

and technical bias (Risso et al., 2011, 2014; Wagner et al., 2012). Average genes expression is

frequently  determined  by TPM (transcripts  per  kilobase  million) or

RPKM/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped).

Both provide counts per length of transcript (kb) per million reads mapped, though RPKM/FPKM

allow gene comparison only within a sample but not between samples making TPM the more

flexible count normalization method.

Normalization methods that account for different sets of expressed genes need to be carefully

chosen  (X.  Li  et  al.,  2017).  Among the available  tools,  edgeR  (Robinson  et  al.,  2009) and

DESeq2 (Love et al., 2014) emerged as robust tools applying various normalization methods,

properly correcting such effects. While DESeq2 divides counts by sample-specific size factors

which are calculated by median ratio of gene counts relative to geometric mean, EdgeR uses a

weighted trimmed mean of the log expression ratios between samples.

Finally,  the  filtered  and  normalized  expression  counts  can  be  used  to  identify  differentially

expressed  genes  or  transcripts  between  two  or  more  conditions.  Differential  behaviour  is

estimated using normalized read counts followed by evaluation of generalized linear models.

Tools  such  as  DESeq2,  edgeR,  or  limma+voom  (Law et  al.,  2014) successfully  apply  this

method and achieve comparable results (Conesa et al., 2016).

All  the  methods  presented  above  are  frequently  used  and  constantly  undergo  extensive

improvements. Still, identification of transcribed transcripts and their quantification by RNA-seq

alone is a poor measurement since much more is happens at the translational level(Schafer,

Adami, et al., 2015).
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Translational regulation

Fundamentals of eukaryotic translation

Protein synthesis is an essential step to transfer genetic information from RNA into a functional

protein. The active translation is ultimately mediated by ribosomes, complex macromolecules

consisting of assembled proteins and small RNAs. A complete eukaryotic 80S ribosome can be

divided into a large (60S) and a small (40S) subunit. The synthesis of a protein during RNA

translation can be subdivided into three parts: translation initiation, elongation, termination, and

termination; in addition, recycling can be also considered as an additional step. The process of

translation initiation in eukaryotes can be subdivided into multiple stages (Figure 3) making the

complete model of eukaryotic translation rather enormous and reviewed elsewhere  (Dever et

al., 2018; Jackson et al., 2010, 2012). A short overview is given in the next section.

The translation initiation phase can be treated as a scanning process searching for the start

codon “AUG” within a 5’ untranslated region (5’ UTR). The scanning starts with the binding of

the 40S-Meth-tRNAi to the 5’-terminus of an m7G-capped mRNA by eIF4F complex, made of the

cap-binding  protein  eIF4E,  the  RNA helicase  eIF4A,  and the scaffolding  protein  eIF4G.  To

ensure accessibility of the ribosome to the potentially folded 5’ leading structure of the RNA,

eIF4A, enhanced by eIF4B and eIF4H helicases, unwind the structured RNA. The small 40S

ribosomal subunit recruitment is facilitated by eIF4G and eIF4 (Jackson et al., 2010; Preiss &

15

Figure  3:  The canonical  pathway of  eukaryotic  translation initiation (H.  J.  Kim,

2019).



Hentze, 2003). The pre-initiation complex (PIC), small 40S ribosomal subunit along with eIFs,

and the Met-tRNAi scanning are executed until a translation initiation codon is found. The mere

“AUG” sequence is frequently not enough to initiate active translation. However, it is commonly

situated  within  a  Kozak  sequence  “GCC(A/G)CCAUGG”  (M.  Kozak,  1986;  Marilyn  Kozak,

1999). Alternative start codons (e.g.,  CUG or GUG) can also efficiently initiate translation in

favourable  contexts  (Diaz  de  Arce  et  al.,  2018).  Complete  motif  analysis  of  sequence

requirements  for  translation  initiation  at  non-AUG  start  codons.  Upon  recognition  of  the

appropriate  translation  start  site  by  the  Met-tRNA,  the  complex  transitions  into  a  closed

conformation called the 48S complex. The large 60S ribosomal subunit joins the smaller 48S

complex forming the final  80S ribosome complex.  At this point,  several initiation factors are

released, among them eIF1A and eIF5B-GDP (Jackson et al., 2010) finishing the first stage of

protein  translation.  Cap-independent  translation  initiation  via  IRES  structures  has  been

observed for some cellular and many viral RNA long ago (J Pelletier et al., 1988), expanding the

canonical proteome (Y. Yang & Wang, 2019).

Translation  elongation  can  be  partitioned  into  three  substeps.  First,  the  amino-acyl  tRNA

complementary to the following  RNA codon is  placed in  the A-site  of  the ribosome,  and a

peptidyl-transferase catalyzes the peptide connection between the amino acids in the P- and A-

sites. Afterwards, the ribosomes move to the tRNA to the E-site, which frees the A-site making it

available for the next tRNA (J. Chen et al., 2012). To ensure the precise translation, elongation

factors (EF1 and EF2) interact with tRNA and the ribosome, providing continuous proofreading

during each cycle. It has been estimated that a single ribosome adds around six amino acids to

the polypeptide  in  a second  (Ingolia  et  al.,  2011).  The translational  efficiency  is  modulated

during the elongation phase by multiple ribosomes bound to the RNA.

Translation terminates with the recognition of one of three possible stop codons (TAG, TGA and

TAA). Upon recognition of the stop codon, release factors trigger hydrolysis of the polypeptide

chain, releasing the complete protein from the ribosome (Capecchi, 1967; Hellen, 2018).

Finally, the recycling step is initiated by ABCE1 a protein that binds to the release factor eRF1

on the post-termination complex (post-TC), causing a split of the ribosome into 60S and 40S

ribosomal subunit, eRF1, and ABCE1. The initiation factors eIF1, eIF1A, eIF3 and eIF3j release

the  deacylated tRNA and messenger RNA (mRNA) from the 40S ribosomal subunit  (Hellen,

2018).
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Cis and trans acting translational regulation by RNA-binding proteins.

Regulation  of  the  canonical  translation  machinery  and  protein  synthesis  is  modulated  via

phosphorylation  or  cleavage of  the translation initiation or  elongation  factors  (Bushell  et  al.,

2006; Hinnebusch, 2014). This regulatory mechanism usually occurs under pathophysiological

stress such as viral infection, temperature changes, starvation, or hypoxia (Spriggs et al., 2010).

The initiation can be reduced via phosphorylation of eIF2, causing a reduction of other factors;

and dephosphorylation of 4E-BP inhibiting eIF4E formation. Besides that,  translation can be

controlled at the step of translation elongation  (Richter  & Coller,  2015), the phosphorylation

status of  elongation  factors eEFs  (Leprivier  et  al.,  2013),  cell  differentiation  (Gingold  et  al.,

2014), and cold stress (Bastide et al., 2017).

Besides the numerous RBPs that are part of the canonical translation machinery acting in cis on

the active translation,  many known RBPs are distant (trans)  regulators of protein synthesis.

They  frequently  repress  or  stimulate  the  translation  of  selected  subsets  of  target  mRNAs.

Translation  can,  in  principle,  occur  at  different  cytosolic  locations  (cytosol,  endoplasmic

reticulum, or specialized districts in different cell types). Even though translational regulation can

happen at various stages (initiation, elongation, termination), translation initiation is considered

as the central, rate-limiting stage in protein synthesis and is thus tightly controlled.

The regulation is achieved via interaction with mRNA structural elements such as 5’  and 3’

UTRs  or  coding  regions  (CDS),  directly  regulating  cytoplasmic  transcript  abundance  as  a

response  to  external  signalling  (R.  F.  Harvey  et  al.,  2018).  Unlike  global  protein  synthesis

control that is mainly regulated via phosphorylation, trans-acting factors that are recruited to 5’

and 3’ UTRs have a significant impact on mRNA metabolism, including polyadenylation, nuclear

export, localization, stability, and translation  (Martin & Ephrussi, 2009). Interaction is exerted

between RNA motifs and RNA-binding domains. Among the most frequently used motifs are

terminal oligopyrimidine (5’TOP) motifs, and internal ribosome entry segments (IRES). At the

same time, 5’TOP motifs have been identified in all ribosomal proteins and thus put them in a

central position of translational regulation.

TOP-containing mRNA has the TOP motif positioned after the 7-methylguanosine triphosphate

(m7 GTP) cap. It consists of an invariable C-residue followed by a 4-15 base pyrimidine tract of

equally  divided  Cs  and  Us  (Meyuhas  &  Kahan,  2015).  Additionally,  a  GC-rich  region

immediately after the TOP motif has been observed, suggesting a coordinated requirement for

translational control (D Avni et al., 1994; Dror Avni et al., 1996).

To  date,  studies  identified  93  mRNAs  containing  TOP  motifs,  including  79/80  ribosomal

proteins. Among them translation initiation factors (eIF3E, eIF3F, eIF4B, and eIF3H), all  five

translation  elongation  factors  (EEF1A1,  EEF1B2,  EEF1D,  EEF1G,  and  EEF2),  and  other
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proteins required for translation (R. F. Harvey et al., 2018). All mRNA containing TOP motifs are

translationally upregulated upon an increase of growth factors or insulin (Patursky-Polischuk et

al.,  2014) but  undergo  translational  repression  upon  cellular  stress  (Fonseca  et  al.,  2015;

Miloslavski et al., 2014). Nevertheless, the precise composition of trans-acting factors and how

they interact with each other is unknown. Several candidates such as LARP1, CNBP, AUF1,

and TAIR/1 have been shown to play an important role in their regulation, and their localization

in stress granules suggests a potential localization interaction (Cockman et al., 2020).

Translational regulation by 5’ UTR features

As discussed above, multiple factors are required to initiate translation, including pre-initiation

complex, mRNA to translate, and precise recognition of the AUG within the Kozak region. All

these factors are under precise control and allow intervention during translation initiation. Along

with m7G cap, 5’ leader sequences harbour other regulatory features that have an effect on

translational,  such as sequence length,  GC-content,  or  the presence of  complex secondary

structures.

The  complexity  of  the  secondary  structure  is  determined  by  three  sequence  properties,

including its length, nucleotide composition, and structural arrangement. Longer sequences are

often  more  stable  because  of  frequent  stacking,  hydrogen  bonds,  and  higher  GC content

(Trotta, 2014). Complex secondary structures require specific RBPs such as DDX3X to unwind

the structured sequence and make it accessible to initiation factors  (Shen & Pelletier, 2020).

Secondary  structures do not  always require  to be unfolded but  can also act  as  alternative

translation  start  sites.  Internal  ribosome entry  site  (IRES)  are  among  the  regions  that  can

provide alternative translation initiation sites (TIS), independent of the m7G-cap structure. Its

complex  self-complementary  structure  has  been  shown  effective  in  the  recruitment  of

ribosomes,  initiation  factors,  and other  RBPs crucial  for  translation  (W.  Yang et  al.,  2019).

Although  frequently  present  in  viral  RNAs  (Martinez-Salas  et  al.,  2018;  Jerry  Pelletier  &

Sonenberg,  1988), IRES sites have been found in numerous human transcripts  (Y. Yang &

Wang, 2019). Furthermore, multiple studies have focused on alternative translation initiation

sites (TIS) upstream of  the main open reading frame (ORF).  Upstream ORFs (uORFs)  are

abundant regulatory elements present in 40-50% of all mRNAs (Somers et al., 2013). Although

our understanding of its function is incomplete, uORF translation has been shown to cause

alleviation of re-initiation efficiency (Hinnebusch, 2005; Marilyn Kozak, 2001) or even repression

(Vattem & Wek, 2004) of the downstream main coding (CDS). With the introduction of ribosome

profiling, it is now possible to quantitatively access uORF and main CDS translation rates on a
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genome-wide scale, allowing dissection of the individual regulatory context. Furthermore, it has

been shown that only a small fraction of uORFs are conserved across vertebrates (Chew et al.,

2016), and therefore only limited protein evidence in mass spectrometry  (Menschaert et al.,

2013).  Suggesting  the  act  of  translation  itself  and  not  the  protein  product  as  a  regulatory

mechanism on the main ORF.

The coding capacity of the non-coding genome

Translation,  as  measured  by  ribosome  profiling,  and  its  regulation  adds  another  layer  of

complexity on gene expression which is of significant importance but a bit underappreciated.   

After  all,  translational  regulation  is  not  only  much  more  complex  but  also  much  more  is

translated than previously anticipated (Karakas & Ozpolat, 2021; Mudge et al., 2021). Advances

using the ribosome profiling technique  (Ingolia et al., 2009; Schafer, Adami, et al., 2015) and

subsequent development of analysis tools (Calviello et al., 2016; Fields et al., 2015; Mackowiak

et al., 2015; Raj et al., 2016) led to the detection of thousands of actively translated sequences

by ribosomes. Surprisingly, several studies have shown in human and mouse (D. M. Anderson

et al., 2015; Mackowiak et al., 2015; Y. Zhang et al., 2018), other species (Chew et al., 2013;

Ruiz-Orera et al., 2014), yeast (Ingolia et al., 2009) and plants (Hellens et al., 2016) that a large

fraction  of  long  noncoding  RNAs (lncRNAs)  host  small  open  reading  frames (sORFs)  with

strong ribosome signals (Figure 4) and with significant three-nucleotide periodicity, indicative of

active translation.

A noncoding RNA longer than 200 nucleotides (nt) is termed as long noncoding RNA (lncRNA),

which lacks species conservation or open reading frames longer than 100 amino acids (aa).

Long  noncoding  RNAs  have  been  shown  to  act  as  gene  expression  regulators  at  (D.  M.

Anderson et al., 2015; Mackowiak et al., 2015; Y. Zhang et al., 2018) different layers, including

epigenetics  (Pandya-Jones et  al.,  2020), transcription  (Latos et  al.,  2012), post-transcription

(Miller & Olivas, 2011), or translation (Carlevaro-Fita et al., 2016), and even protein abundance

(K. C. Wang & Chang, 2011).
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These discoveries suggest that a significant fraction of lncRNAs are translated and expand the

annotated translatome. Though it  has to be figured out how many of  these proteins (called

“microproteins”) result in functional products or whether the act of translation plays a regulatory

role. Among the microproteins that have been functionally characterized over the last years, few

are muscle-specific and have been shown to regulate SERCA activity  (K. M. Anderson et al.,

2016; Matsumoto et al., 2017; Nelson et al., 2016). For example, the muscle-specific 34 amino

acids long peptide ”DWORF” localizes to the sarcoplasmic reticulum (SR) membrane where it

enhances SERCA activity by replacing its inhibitors (Nelson et al., 2016). Intriguingly, for some

other  translated lncRNAs,  a noncoding  role  has been previously  shown,  suggesting  a  dual

function for some of them. These discoveries hint towards distinct functions encoded by one

gene, still for each candidate wet-lab experiments need to show whether the lncRNA function is

purely  non-coding or  if  the microprotein  makes the function.  Particularly  challenging  will  be

experiments that confirm both non-coding and coding function.

Besides lncRNAs, circRNAs are another class of noncoding RNAs produced by a non-canonical

splicing event termed back-splicing, which connects downstream splice donor site covalently

with the upstream splice-acceptor site. The majority of circRNAs are transcribed from protein-

coding genes via RNA polymerase II but lack, contrary to canonical transcripts, a 5’-cap and 3’-

polyadenylation (poly-A) site  (Qu et al., 2017). CircRNAs generally localize to the cytoplasm.

Multiple studies have shown that circRNAs are an abundant and conserved class of RNA widely

expressed across complex tissue-, cell type- or stage-specific mode (Hanan et al., 2017; Venø

et al., 2015; You et al., 2015). Even though considered noncoding, several works have shown

for  selected circRNAs their  ability  to  encode proteins  (Granados-Riveron  & Aquino-Jarquin,
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2016; Legnini et al., 2017; Pamudurti et al., 2017), suggesting a yet unprecedented potential

role of circRNAs.

Conservation of the noncoding genome

Traditional approaches assessed ORF conservation across species to identify protein-coding

genes with preserved function, from human down to bacteria. Automated pipelines used this

conservation approach to identify genes with long (≥ 100aa) sequences which inherently show

more robust conservation than short (< 100aa) sequences  (Couso & Patraquim, 2017). Even

though many lncRNAs show similar features to protein-coding mRNAs, including transcription

by polymerase II (Pol II) with 5’-cap and 3’-polyadenylation tail and accumulation in the cytosol

(Van Heesch et  al.,  2014),  signatures of  conservation are largely  absent  in  the non-coding

genome, discarding transcripts with shorter ORFs (50 - 110 codons) by automatic annotation

pipelines which require a translated gene to encode a protein longer than 100 amino acids and

show nucleotide conservation across species. Short proteins with poor species conservation

might have evolved recently, indicating that many of these proteins would be evolutionary young

(Ruiz-Orera et al., 2018). However, there is also rising evidence that the act of translation can

be conserved and contribute to the stability of a transcript, independent of the conservation (H.

Zhang et al.,  2018). Fields and colleagues have suggested that homologous lncRNAs might

undergo translation across different lineages without the presence of a constrained amino acid

sequence,  and  only  the  translation  initiation  start  site  would  be  conserved  across  further

species.  Even though not  present  across many species,  conservation might  be visible  to a

subset like hominids which discriminated primates from other mammals.

Dilated cardiomyopathy and heart failure

All the previously described steps is fundamental in molecular biology of which some parts are

well  studied  and others  yet  poor  understood.  Dysregulation  of  these  can results  in  severe

diseases  (Tahmasebi  et  al.,  2018).  Of  particular  interest  are  disruption  causing

cardiomyopathies.

Cardiomyopathies are disorders of the heart muscle with mechanical or electrical dysfunction

resulting  in  distinct  phenotypes,  including  dilated  cardiomyopathy  (DCM)  and  hypertrophic

cardiomyopathy  (HCM),  arrhythmogenic  cardiomyopathy  (ACM),  and  left  ventricular

noncompaction  cardiomyopathy  (LVNC)  (Figure  5).  Dilated  cardiomyopathy  is  the  most
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frequent type defined by left- or biventricular dilatation and systolic dysfunction in the absence

of  hypertension,  valvular  disease,  coronary  artery  disease,  or  congenital  heart  disease

(McKenna et al., 2017). DCM can be classified into a genetic and nongenetic form (Elliott et al.,

2008),  showing  severe  cardiac  dysfunction  that  can  lead  to  heart  failure  and  arrhythmias

(Richardson et al., 1996), making it the primary cause of heart transplantation. Besides left- or

biventricular enlargement, resulting in increased weight up to 1kg, the walls are relatively thin,

showing decreased contractility and impaired ventricular function (Elliott et al., 2008). The 2013

published population-based study estimated a prevalence of DCM to be > 1 per 250 individuals

(Hershberger et al., 2013). The mortality rate associated with cardiomyopathy is 5.9 per 100,000

individuals (Lozano et al., 2012), with a survival rate of 50% after five years of diagnosis since

patients develop heart failure or arrhythmias over time  (Luk et al.,  2009). DCM-related heart

failure arises due to pump failure (70%),  while  the remaining fraction encompasses sudden

cardiac death from arrhythmias (Dries et al., 1999). 
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Figure 5: Echocardiography of different cardiomyopathies.

Left  ventricular noncompaction cardiomyopathy (LVNC) on the

right upper part. Dilated cardiomyopathy (DCM) at the bottom left

and Hypertrophic cardiomyopathy (HCM).  (McNally & Mestroni,

2017)



The  risk  of  developing  heart  failure  is  ~30% higher  in  black  individuals  with  an  increased

mortality  rate of  1.2 -  1.5 than white individuals  (Coughlin  et  al.,  1994;  Dries et  al.,  1999).

Furthermore, DCM is diagnosed more often in men than in women (Nieminen et al., 2008).

Among the nongenetic factors associated with DCM are alcohol abuse, drugs, viral infection, or

autoimmune diseases, still around 30% of cases have a familial and thus genetic pathogenesis

(Hershberger et al., 2013). To date, more than 50 genes have been associated with DCM with

different onset and progression of the disease (Raju et al., 2011). Affected genes are involved in

various biological processes, such as nuclear-localized splicing and transcription, translation or

encoded components of the sarcomere, membrane-scaffolding proteins  (Brauch et al.,  2009;

Harakalova et al., 2015; Herman et al., 2012; Kamisago et al., 2000). Thus, evaluation of DCM

patients should encompass detailed family history and their clinical screening combined with

next-generation sequencing methods such as whole-exome sequencing to identify the disease

variant and the affected gene(s).

The most common genes known to cause DCM are TTN (Gerull et al., 2002), LNMA (Fatkin et

al., 1999), MYH7,  TNNT2 (Kamisago et al., 2000), and RBM20 (Brauch et al., 2009; Maatz et

al.,  2014). Interestingly, distinct mutations within the same gene may cause either dilated or

hypertrophic cardiomyopathy suggesting a shared molecular basis across cardiomyopathies.

Material and Methods

Note: All wet-lab experiments were done by colleagues and collaborators inside and outside of

the MDC. Their work will be summarized shortly in this thesis. For a detailed description of the

wet-lab methods, see references in the corresponding section. Those are mainly the following

publications  “The  Translational  Landscape  of  the  Human  Heart”  (DOI:

10.1016/j.cell.2019.05.010) and  “Widespread Translational  Control  of  Fibrosis  in  the Human

Heart by RNA-Binding Proteins” (DOI: 10.1161/CIRCULATIONAHA.119.039596).

Generation of data sets

Human primary tissue

Human left  ventricle heart  tissue from 65 DCM patients was collected during left  ventricular

assistance device (LVAD) implantation or from explanted hearts, whereas 15 unaffected non-

DCM controls came from unused donor hearts.
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Institute Condition

Cardiovascular Research Center (London, England) (n = 41) DCM

UMCU (Utrecht, Netherlands) (n = 4) DCM

HDZ-NRW (Bad Oeynhausen, Germany) (n = 20) DCM

UMC (Utrecht, Netherland) (n = 4) non-DCM

Sydney heart Bank (Sydney, Australia) (n = 10) non-DCM

DHZB (Berlin, Germany) (n = 1) non-DCM

The cohort consists of 22 females and 58 males whose age (mean = 43.6; SD = 15.48 years)

and gender did not correlate with the condition of the patients (Fisher's exact test; p-value =

0.28) or the first two principal components (both mRNA-seq or Ribo-seq; Student's  t-test for

association with first two principal components; p-value = 0.13 - 0.35). For this study, power

calculation  was  not  applied,  in  order  to  be  as  comprehensive  as  possible  in  detecting  all

translation events.

Additionally, human kidney (n = 6) and liver (n = 6) tissue samples were obtained to validate

potential  translation  events  among  long  noncoding  RNA  genes.  Tissue  collection  and

processing have been described in the corresponding publication  (van Heesch et al.,  2019).

Human  kidney  and  liver  samples  were  obtained  under  ethical  approval  (Germany;  ethical

approval  EA1/134/12)  for  heart  and  (Japan;  ethical  approval  H19-057-437)  for  kidney  and

(Germany; ethical approval PV4081) for the liver.

Human iPSC-CM and fibroblast cell culture

Human iPSC-derived cardiomyocytes (iPSC-CM) were differentiated as described previously

(Burridge2014) by the Pluripotent Stem Cell  facility at MDC Berlin. Libraries were generated

and used for mRNA-seq, ribosome profiling, and shotgun MS.  XIST expression was used for

gender identification (females were defined by high XIST mRNA abundance). Differentiation and

processing of the human primary cardiac fibroblasts (male donors) and iPSC-CM have been

described previously (Chothani, Schäfer, et al., 2019; van Heesch et al., 2019).
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Animal models

Mouse left ventricular heart tissue was obtained from 10-week-old C57BL/6 wild-type males.

Rat  left  ventricular  samples  from previously  described and acquired from the same source

(Schafer,  Adami,  et  al.,  2015).  These  include  6-week-old  inbred  BN-Lx  (n  =  5)  and  SHR

(n = 5) males. Tissue processing was described in the main publications previously  (Schafer,

Adami, et al., 2015; van Heesch et al., 2019)

Processing and alignment of datasets

Ribosome profiling (Ribo-seq) and matching mRNA-seq

Ribosome profiling was performed on human primary left ventricles (n = 80), human kidney (n =

6), human liver (n = 6), human iPSC-CM (n = 2), human primary cardiac fibroblasts (n = 20),

and mouse left ventricles (n = 6) according to the TrueSeq Ribo Profile which was previously

optimized for tissue samples (Schafer, Adami, et al., 2015).

The protocol was initially used to generate Ribo-seq rat left ventricle data from BN-Lx and SHR

animals  (available  at  the  European  Nucleotide  Archive  (ENA)  under  accession  number

PRJEB7498).  In  this  work  the  dataset  was  used  to  validate  translation  events  and  their

conservation between human and rodents. Ribosome profiling on the human iPSCM-CM cells

was  performed using  the TruSeq Ribo  Profile  (Mammalian)  Library  Prep Kit  (Illumina,  San

Diego,  CA;  USA)  following  the  TruSeq  Ribo  Profile  protocol.  For  all  samples,  library  size

distribution was verified on the Bioanalyzer 2100, multiplexed and sequenced on an Illumina

HiSeq 2500, generating single end 1 × 51nt long reads.

To avoid preprocessing biases, samples were processed in batches of maximum 30 units.

For the human heart  Ribo-seq libraries,  an average library depth of  115M (min.  56M, max.

232M) raw reads was achieved.

Along with ribosome profiling, poly(A)-purified mRNA-seq libraries were generated from high-

quality RNA (average RNA Integrity Number (RIN) of 8.1 (human left ventricle), 9.1 (rat), and

7.9 (mouse)). Rat RNA was extracted from the same tissue used for ribosome profiling. RNA-

seq libraries were prepared in batches of 48 samples according to the TruSeq Stranded Total

RNA and mRNA Reference Guides.

Libraries were multiplexed and sequenced on an Illumina HiSeq 4000, producing paired 2 ×

101nt reads. TotRNA-seq was generated for the human heart but not for human kidney and

liver tissues. For the human heart samples, an average library depth of  83M (min. 59M, max.
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118M)  and  82M  (min.  52M,  max.  205M)  raw  reads  was  achieved  for  the  mRNA-seq  and

totRNA-seq, respectively.

Preprocessing of sequenced reads

While  RNA-seq adapters  were removed at  the  demultiplexing  stage with  software provided

along  with  the  sequencer,  Ribo-seq  reads  are  shorter  than  51nt.  Because  of  this,  the

sequencing  reached  out  into  the  3’  adapters,  which  needs  to  be  manually  removed.  It  is

essential to mention that reads that do not contain a 3’ adapter should be discarded as they

might come from different sources of interaction and not from ribosome-protected fragments

during active translation. Ribo-seq read adapters were manually removed using FASTX-Toolkit

(http://hannonlab.cshl.edu/fastx_toolkit) with the following command:

Unix Code:

fastx_clipper  -a  AGATCGGAAGAGCACACGTCT  -l  20  -c  -n  -v  |  fastx_trimmer  -f  1  -z  -o

.trimmed/<sampleID>/trimmed.fastq.gz

Parameters:

-a Adapter sequence used during library preparation.

-l Discard sequences shorter than N nucleotides; Default is 5.

-c Discard non-clipped sequences. This option needs to be used for Ribo-Seq but not for RNA-

seq libraries.

-n Keep sequences with unknown nucleotides.

-v Verbose - report number of sequences.

-f First base to keep.

-z Compress output.

The  resulting  FASTQ  files  consist  of  the  actual  bases  called  during  sequencing  and  the

corresponding Phred quality score. The score is defined as the probability that the base-calling

is wrong, e.g. -10*log10(0.0001) = 30. Reads showing on average Phred score above 25 are

considered to be of good quality.

To obtain a set of fragments corresponding to autosomal and sex chromosomes, reads from

each sample were mapped to the mitochondrial RNA, ribosomal RNA, and tRNA sequences of

the respective species,  and the unmapped fraction  was kept  for  further  processing.  Due to
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differences in average mRNA-seq and Ribo-seq read length, full-length mRNA-seq reads were

trimmed  with  FASTX-Toolkit  to  29-mers  (average  length  of  Ribo-seq  reads)  to  be  able  to

establish a comparative analysis between mRNA-seq and Ribo-seq datasets and escape any

mapping and/or quantification bias:

Unix Code:

fastx_trimmer -f 1 -l 29 -z -o trim_dir/outname.fastq.gz

Parameters:

-f First base to keep.

-l Last base to keep.

-z Compress output with GZIP.

-o FASTA/Q output file.

Most  recent  genomes  from  mitochondria  and  ribosomal  RNA  for  many  species,  including

human, mouse and rat are available at the Ensemble database (Howe et al., 2021).

Initial 

Read Alignment

At first,  human, rat and mouse full-length 2 × 101nt  mRNA-seq reads were mapped to the

respective reference genomes (GRCh38.p10/hg38, Rnor6.0/rn6 and GRCm38.p5/mm38) using

STAR v.2.5.2b (Dobin et al., 2013).

STAR mapper was selected because of its high accuracy and mapping speed. The mapping

procedure is subdivided into two steps. In the first  step, STAR searches for every read the

longest  sequence  that  matches  the  reference  genome,  called  Maximal  Mappable  Prefixes

(MMPs). The first MMP is called seed1. STAR will then search only for the unmapped fraction to

match the reference genome or the next MMP, which is then called  seed2 and so on. This

strategy, combined with the intelligent division of the genome and its storage in a suffix array,

makes STAR faster than other algorithms that first try to map the whole read before splitting it

into parts. In the second step, STAR stitches the seeds to generate a complete read by first

clustering the seeds based on proximity and then based on the best alignment for the read,

considering mismatches, indels, or gaps.
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For the actual mapping of the mRNA-seq samples, we used a 2-pass mode that allows novel

exon  splice  junction  detection.  STAR  mapping  was  done  using  the  following  modified

parameters:

--outSAMtype BAM SortedByCoordinate,

--outFilterMismatchNmax 6,

--outFilterMultimapNmax 20,

--alignSJDBoverhangMin 3,

--outFilterType BySJout,

--alignSJoverhangMin 10

--outSAMattributes All

For proper de novo assembly, an XS tag for each mapped read in each mRNA-seq BAM file is

required and was added using “tagXSstrandedData.awk” script, provided by the STAR authors

and  made  available  via  the  GitHub  development  platform  at:

https://github.com/alexdobin/STAR/tree/master/extras/scripts.

De novo transcriptome assembly

To  capture  the  complete  transcriptome,  including  all  cardiac  expressed  isoforms  and

unannotated lncRNAs, the mRNA-seq BAM files were used to create sample-specific de novo

transcriptomes  using  StringTie  v1.3.3  (Pertea  et  al.,  2015).  All  novel  transcriptomes  were

merged into one consensus transcriptome GTF file for each species, using the StingTie-merge

option,  guided  by  the  canonical  reference  annotation  (Ensembl  release  87).  To  avoid  the

assembly of undesired mapping artefacts or short RNAs, a novel transcript was required to be

longer than 200nt and to have a minimum expression level of FPKM  ≥  1.  FPKM stands for

Fragments Per Kilobase of transcript per Million mapped reads (paired-end).

In the next step, we filtered undesired novel transcripts coming from mono exonic genes that

lack strand information, known non-polyadenylated transcripts (e.g. snRNA), newly annotated

genes with no unique mapping reads, and transcript isoforms overlapping neighbouring genes

on the same strand. In annotated genes, newly assigned StringTie IDs were manually replaced

by the respective reference Ensembl IDs.

We denoted all antisense transcripts (AS), long intergenic (lincRNA), and processed transcripts

as lncRNAs. Due to differences in lncRNA annotation across species, we took a particular effort

to  capture  the complete  set  of  already annotated lncRNAs and small  protein-coding genes

(longest ORF < 100aa) in each of the analyzed species. The protein-coding genes with short
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ORFs were of particular interest since they are largely annotated as lncRNA in other species. It

happened that a small protein-coding in human is a lncRNA in mouse and vice versa. Using the

UCSC Batch Coordinate Conversion (LiftOver) utility  (Kuhn et al., 2013), we cross-referenced

annotated  lncRNAs  and  small  protein-coding  genes  with  newly  predicted  genes,  keeping

potential orthologous lncRNAs and removing novel genes without a match in any of the other

species.

In the human heart, the presented method added 117 potential novel lncRNAs, 978 and 224

novel isoforms of already annotated lncRNAs and small protein-coding genes, respectively. The

newly  detected  candidate  lncRNAs  and  isoforms  of  annotated  genes  were  included  in  the

respective species GTF and used as a reference for downstream analysis.

Second alignment

The extended GTF with a complete set of cardiac lncRNAs (annotated + novel) was used to

map the  trimmed and  cleaned  mRNA-seq,  and  Ribo-seq reads  with  STAR v2.5.2b.  As  all

transcripts  isoforms  of  interest  were  incorporated  in  the  novel  annotation,  de  novo  splice

junction detection was disabled to improve mapping precision. Due to the short read length for

both the trimmed mRNA-seq and Ribo-seq, only two mismatches were allowed. Since ribosomal

footprint span a range of 20 - 35nt in length, with the majority being 29nt long, we defined the

starting  point  of  the  search  at  half  of  the  read  length  with  the  option

-seedSearchStartLmaxOverLread 0.5.  Otherwise,  both mRNA-seq and Ribo-seq reads were

mapped with the same settings.

Identification of novel translation events

Detection of active translation with RiboTaper

In the next step, we used RiboTaper v1.3  (Calviello et al., 2016) to identify active translation

across ribosome profiling data with default settings. The principle behind RiboTaper is to use

Fourier  transformation to determine the 3nt movement of the ribosome along with the open

reading frame. RiboTaper additionally applies a  de novo ORF discovery to capture the entire

translatome,  only  considering  ORFs with  canonical  start  and  stop  codons.  To  ensure  high

periodicity, we kept reads length for which 70% of the reads matched the primary reading frame

of the ORF; otherwise, the settings were not changed. All ORFs were required to be at least
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eight amino acids long, showing evidence of uniquely mapping reads and have at least 21 P-

sites. The resulting list was further filtered, requiring a gene to be considered as translated if the

average mRNA FPKM ≥ 1 (transcription) and detected as translated in at least 10/80 in human,

3/10 in rat,  and 2/6 in mouse heart  samples.  Each ORF was required to have an identical

translation termination codon in at least 5/80 in human, 2/10 in rat, and 2/6 in mouse heart

samples to avoid spurious signals.  Besides canonical  ORFs and short  ORFs (sORFs) from

lncRNAs, we were able to capture up- and downstream ORFs. Upstream ORF can be upstream

of the main ORF or partially overlap it but on a different reading frame.

Translation of known functional lncRNAs

To quantify the fraction of translated lncRNAs with previously published noncoding function, we

manually  curated  a  database  of  324  functionally  characterized  lncRNAs  based  on  public

databases (Amaral et al., 2011; Gray et al., 2013; Quek et al., 2015) and extensive literature

search. We see 61/324 (18.82%) lncRNAs expressed in human, rat, or mouse hearts, and 32

were detected as translated by RiboTaper in the heart (27 in human, 1 in rat, 7 in mouse).

Furthermore, we see translation evidence for 28 translated lncRNAs in human primary cardiac

fibroblast  and  17  in  iPSC-CM,  of  which  ten,  respectively  two  have  not  been  detected  as

translated in the human heart. Altogether, we were able to collect 42 translated, functionally

characterized lncRNAs in the heart.

Identification of microprotein features

To better understand where microproteins localize in the cell and hypothesize about potential

functions based on localization, we looked into embedded amino acid sequence features such

as N-terminal regions that frequently define peptide localization. In the first step, we predicted

microprotein  localization  using  TargetP v1.1  (Emanuelsson  et  al.,  2000) and DeepLoc  v1.0

(Almagro Armenteros et al., 2017). To reduce false-positive signals, we omitted plant-specific

chloroplasts as possible localization. SignalP v4.1  (Petersen et al., 2011) and TMHMM v2.0c

(Krogh  et  al.,  2001) were  applied  to  predict  signal  peptides  and  transmembrane  helices

respectively across new amino acid sequences that target proteins into, or across membranes.
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circRNA detection and translation

CircRNA detection in the human left ventricle was performed on the rRNA depleted totRNA-seq

samples, since these datasets contain can capture nonpolyadenylated fragments; mRNA-seq

was  used  as  a  negative  control,  particularly  for  detecting  polyadenylated  transcripts,  e.g.

shuffled exons mimicking backsplice junction signs. In the first step, reads were mapped with

BWA-MEM (H. Li & Durbin, 2010) to the human genome (GRCh38.p10/hg38) with the following

parameters:  -t4,  -L  3,3  -E  3,3  -k  14  -T  1.  The  actual  circRNA  detection  was  done  using

find_circ2 (v1.2 https://github.com/rajewsky-lab/find_circ2). The identified circRNAs were filtered

for  the  ones  with  at  least  two  unique  reads  in  at  least  10/80  samples,  but  50  junction

overlapping reads in total. Additionally,  they had to be of an exonic length of 50 - 10,000nt,

coming from a single gene of autosomes or sex chromosomes and absent in mRNA-seq.

To avoid false-positive circRNAs backsplice junctions arising from  trans-splicing and/or exon

shuffling  in  polyadenylated  transcripts,  we  additionally  applied  a  ratio  cutoff  of  100:1  for

presence in totRNA-seq vs. mRNA-seq data. This led to the exclusion of 320/324 circRNAs that

were detected in both datasets. Finally,  we tagged circRNAs as good quality candidates by

requiring a 15-fold higher support than warning flags, resulting in 85% of 8,878 good quality

circRNAs.

CircRNA translation was identified by remapping Ribo-seq reads that could not be mapped to

the  human  transcriptome  and  genome,  to  the  backsplice  junctions  using  Bowtie2  (v2.0.6)

(Langmead & Salzberg, 2012). For this, 40 nucleotides of splice junction flanking exons were

extracted, reversely combined, and used as novel reference circRNA transcriptome to map the

Ribo-seq reads. Requiring an overlap of at least 9nt on either side of the backsplice junction, we

mapped 1,298 (766 unique) Ribo-seq reads to 508 circRNAs. Applying stringent criteria, we

identified 40 circRNAs encoded by 39 genes that whose backsplice junctions were covered by

at least three unique and five total Ribo-seq reads and thus considered as potentially translated

in the human heart.  To confirm Ribo-seq mapping specificity and that mapping is an actual

signal and did not arise by chance, we simulated ~3.8 million circRNAs backsplice junctions

derived from random combinations of translated cardiac exons removing backsplice junctions

predicted by find_circ2 on the actual dataset in both mRNA-seq and totRNA-seq. The remaining

junctions  were  randomly  subsampled  into  10,000  sets  each  of  8,878  simulated  junctions,

preserving the circRNA length distribution observed in the actual circRNA dataset. We again

used  the  unmapped  fraction  Ribo-seq  reads  (i.e.  reads  cannot  be  mapped  to  the  linear

transcriptome and genome) to map them against each of these 10,000 sets requiring overlap

between 1 - 15nt to check if any other potential thresholds would results in a significant outcome

or confirm that every test set has significantly lower mappability that the actual circRNA dataset.
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Quantitative analysis of the cardiac transcriptome and translatome

Gene expression quantification and differential expression

Gene  expression  quantification  for  both  mRNA-seq  and  Ribo-seq  samples  was  done  by

counting reads that map to the coding sequence (CDS) region of all translated genes and on

full exons of untranslated genes using HTSeq-count  (Anders et al., 2015). Full-length mRNA-

seq counts were used to identify transcribed genes with an average expression of FPKM ≥ 1

across all heart samples.

Finally,  we removed translated genes that showed zero counts in the final  quantification by

HTSeq-count (both trimmed mRNA-seq and Ribo-seq).). This also removed overlapping genes

with full CDS overlap that could not be quantified unambiguously.

mRNA-seq:

htseq-count  -f  bam  -r  pos  --stranded=reverse  -t  exon  -i  gene_id  human_mRNA.bam

Homo_sapiens.GRCh38.87_custom.gtf > /path/out/human_mRNA_counts.txt

Ribo-seq:

htseq-count  -f  bam  -r  pos  --stranded=yes  -t  exon  -i  gene_id  human_ribo.bam

Homo_sapiens.GRCh38.87_custom.gtf > /path/out/human_ribo_counts.txt

Parameters:

-f File type

-r Sorting of the file.

-c Discard non-clipped sequences. This option needs to be used for Ribo-Seq but not for RNA-

seq libraries 

-n Keep sequences with unknown nucleotides.

-v Verbose; report number of sequences.

-f First base to keep.

-z Compress output.

Our setup aimed to achieve an unbiased comparison of transcriptional and translational levels

and disease conditions. For this, we integrated raw counts of transcribed and translated (n =

11,387) genes of both mRNA-seq and Ribo-seq, using reads mapping to CDS regions.  For

mRNA-seq reads, single-end reads trimmed to 29-mers (average ribosomal footprint size) were
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used.  Finally,  joined sample size normalization and differential  expression analysis  between

DCM and control using DESeq2 v1.12.4 (Love et al., 2014) was applied.

R code:

pool_sizeFactor ←

 estimateSizeFactorsForMatrix(cbind(raw_counts_polyA,raw_counts_ribo))

mrna_sizeFactor ← pool_sizeFactor[1:ncol(raw_counts_polyA)]

rpf_sizeFactor  ←  pool_sizeFactor[(ncol(raw_counts_polyA)+1):(ncol(raw_counts_polyA)

+ncol(raw_counts_ribo))]

A  gene  was  considered  differentially  expressed  if  it  met  the  significance  threshold  of

padj ≤ 0.05 and a fold change (FC) ≤ 1/1.2 (0.83) or ≥ 1*1.2.

The  results  were  used  to  identify  gene  expression  level  changes  from  transcription  to

translation, revealing a hidden layer of regulation that has, e.g. a basis at the transcriptional

level. For this a delta fold change of mRNA-seq FC (DCM vs. Control) and Ribo-seq FC (DCM

vs. Control) was calculated.

Translational efficiency was calculated on mRNA-seq vs. Ribo-seq ratio for each gene across all

samples.  Alternative  methods to estimate TE such as  group-specific  TE or  ΔTE  (Chothani,

Adami, et al., 2019; W. Li et al., 2017; Z. Xiao et al., 2016; Zhong et al., 2017), were not suitable

for calculating the RBP-driven regulation because they provide finalized group-specific ratios.

Coregulation analysis

We calculated Spearman correlations using DESeq2-normalized counts of pairwise complete

observations in different sets of genes: (i) all translated genes, (ii) all differentially transcribed

and translated genes, (iii) lncRNA-mRNA antisense pairs, and (iv) RBP target gene pairs, for a

better understanding of how genes are coregulated. Only those with detected expression (mean

FPKM ≥ 1) and translation in at least 20 samples were considered. Gene pairs that showed a

significant (padj ≤ 0.05) correlation after correction for multiple testing  (Benjamini & Hochberg,

1995) were retained for downstream analysis. For the RBP target gene pairs correlations, we

used expressions levels of the RBP (as measured by Ribo-seq) and either target gene mRNA-

seq abundance or translational efficiency.

To test for significant differences between two correlation values, correlation coefficients were

Fisher  Z  transformed  (Fisher  Z-Transformation  or  Fisher  r  to  z  transformation)  (Fisher,

1915) and compared to a normal distribution, allowing for statistical comparison.
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To study global (or subsets of genes) coregulation, the computed correlation matrix was used to

elucidate the Euclidean distance followed by hierarchical clustering. Cluster visualization was

done  using  heatmap.2  from  the  gplots  v3.0.1,  the  modified  heatmap.3

(https://github.com/obigriffith/biostar-tutorials/tree/master/Heatmaps)  or  pheatmap  v1.0.12  R

package.

To  increase  the  interpretability  of  gene-gene  clusters  of  differentially  expressed  genes  (as

measured by transcription,  translation,  or  both)  and their  relationship  to each other  without

losing information, we performed principal component analysis (PCA). Analysis was done on

translationally downregulated (delta Log2FC < 1/1.2), translationally upregulated (delta Log2FC

> 1.2) and transcriptionally regulated (delta Log2FC > 1/1.2 and < 1.2) genes together with

average transcription and translation log2FC values between DCM and control samples.

Gene Ontology (GO) enrichment analysis

We assigned biological function to selected gene sets of interest via GO enrichment analysis

using  gProfiler  v0.6.4  (Reimand et  al.,  2016) archive  revision  1741  (Ensembl  90,  Ensembl

Genomes 38). 

Because  of  the  time  difference  of  the  two  presented  works  in  this  thesis,  GO enrichment

analysis for the RBP section was performed using gProfiler2 v0.1.9 (archive revision fof4439,

(Raudvere et al.,  2019). For all  GO enrichment analyses,  translated genes were used as a

custom background set. Only GO terms of 20 - 500 genes were considered to avoid general

terms that frequently show strong significance due to beneficial input and term size ratio.

Gene specificity across tissues and cell types

GTEX v6  data  was  used  to  define  cardiac  and/or  muscle-specific  expression  of  translated

lncRNAs  by  requiring  the  mean  expression  level  of  a  gene  in  the  left  ventricle  or  atrial

appendage (cardiac-specific)  to be 12-fold higher  than the mean expression in  other GTEx

tissues  or  the  mean expression  in  the  left  ventricle,  atrial  appendage  and  skeletal  muscle

(muscle-specific) to be 10-fold higher than the mean expression in other GTEx tissues. We

further used ribosome profiling information to validate the fraction of translated lncRNAs in the

human kidney, liver primary cardiac fibroblasts  (Chothani, Schäfer, et al., 2019), and hiPSC-

derived  cardiomyocytes  (21  days  old).  RNA-binding  protein  (RBP)  tissue  expression  was
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defined as ubiquitously expressed if present in more than 30 samples with mean TPM ≥ 1 or

high abundance with mean TPM ≥ 10.

Conservation analysis of translated lncRNAs

To understand whether potentially translated lncRNAs show any patterns of conservation, we

first investigated nucleotide conservation of the detected sORFs using a PhyloCSF (Lin et al.,

2011) based pipeline  (Mackowiak et al., 2015) containing alignments of 49 species. LncRNA

sORFs  with  a  PhyloCSF  score  >  10  were  considered  as  potentially  conserved  across

vertebrates. Some of the tested candidates were completely lacking alignment information and

thus could not be tested for conservation. These candidates might be translated from human-

specific regions that are absent in other species completely, or from fast-evolving regions that

could  no  be  aligned  to  other  genomes  due  to  a  high  sequence  divergence.  Positional

conservation was determined using LiftOver by converting the genomic lncRNA coordinates

between human (hg38), rat (rn6), and mouse (mm10) genomes and requiring a gene to show

relative  localization  to  homologous  neighbouring  protein-coding  genes  where  possible  and

without sense-overlap with annotated genes. Important to mention the poor annotation of the rat

transcriptome  with  multiple  protein  coding  genes  annotated  as  lncRNAs  and  vice  versa.

Positional conservation analysis should be therefore reduced on translated transcript no longer

than 150 amino acid.

Additionally, we required a sense-antisense gene pair to be in 5kb neighbourhood. Appropriate

chain  files  for  genomic  conversion  between  human,  rat  and  mouse  are  available  UCSC

Genome Browser repository  (Navarro Gonzalez et al.,  2021). Translation initiation site (TIS)

conservation  was  also  defined  reciprocally  between  human,  rat,  and  mouse  as  previously

described (Fields et al., 2015). For this, we extracted TIS of translated lncRNAs coordinates and

converted their coordinates using LiftOver to the other two species. Conservation was assumed

when the conversion was successful  in  at  least  one species within a window of  9nt  up- or

downstream of converted TIS.

Computational analysis of RBPs-targets

Note: The following methods are part of the second paper which investigates multifunctionality

of RNA-binding proteins.
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Identification of CLIP-seq targets

ENCODE database (Davis et al., 2018) was used to download eCLIP-seq data for 150 RBPs for

two different cell lines, HepG2 (n = 103) and K562 (n = 120). RBP datasets consisted of eCLIP-

seq  peaks  and  BAM  files  of  already  mapped  reads  to  the  human  reference  genome

(GRCh38.p10/hg38). For the identification of robust eCLIP peaks across replicates and different

cell  lines,  we processed the datasets as  suggested by van Nostrand and colleagues  (Van

Nostrand et al.,  2020). We first  quantified the coverage of each predicted peak for all  input

(mock) and immunoprecipitation (IP, antibody against RBP) BAM files using the BEDTools suite

(Quinlan & Hall, 2010). The relative information content was defined as IC = pi x log2 (pi  / qi),

where  p  and  q  are  the  sums  of  reads  mapping  to  the  peak  in  IP  and  negative  control,

respectively, and then further used to calculate the Irreproducible Discovery Rate (IDR) (Q. Li et

al.,  2011),  a  parameter  indicating  reproducible  peaks  across  biological  replicates.  We

considered peaks as significant and reproducible when meeting an IDR cutoff < 0.01, p-value ≤

10-5, and fold-enrichment (FC) > 8. For two or more significant  peaks overlapping the same

genomic region, the most significant was retained. To capture all RBP targets, non-overlapping

peaks across cell  lines  were pooled into one final  target  set.  For  the disease-relevant  and

muscle-specific  splicing  repressor  RBM20,  whose  targets  were  not  part  of  the  ENCODE

dataset, peak regions were obtained directly from the authors (Maatz et al., 2014) and added to

the peak table. As RBM20 peaks were derived from rat cardiomyocytes, we used the UCSC

Batch  Coordinate  Conversion  (LiftOver)  utility  to  convert  rat  RBM20  HITS-CLIP  targets  to

GRCh38.p10/hg38 coordinates. Finally, the peaks were added to the table containing ENCODE

RBP  targets.  Overall,  we  obtained  on  average  4,300  CLIP-seq  peaks  that  were  further

overlapped  the  linear  transcriptome  for  each  RBP  experiment  to  identify  genes  that  were

supported at least one CLIP-seq peak and thus denoted as RBP targets.

Target gene enrichment

RBPs  significantly  correlating  with  at  least  ten  CLIP  targets  were  considered  as  potential

regulators  of  mRNA  abundance  and/or  TE  levels.  We  leveraged  the  significance  of  the

correlation by generating 100,000 random equally sized theoretical target sets out of all cardiac

translated genes, as has been suggested before (Chothani, Schäfer, et al., 2019). For each of

these sets, the number of correlating RBP targets (theoretical) was quantified and compared to

the actual observation using an empirical test.
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Empirical p-value = sum (theoretical targets > true RBP targets) / 100,000

Empirical p-values were corrected for multiple testing using the Benjamini-Hochberg approach.

RBPs that showed a significantly (padj ≤ 0.05) higher number of CLIP-derived than theoretical

targets  were  considered  as  putative  regulators  of  either  mRNA  abundance

(n =  58)  or  TE (n =  37).  Because  of  the fixed number  of  random test  sets,  the  minimum

empirical p-value, after correction for multiple testing, is 5.25 × 10-5. Thus the p-value does not

necessarily  the strength of the significance. To overcome this gap, we calculated Glass’ Delta

( )  △ (Freeman et al., 1986) effect sizes, a measure of RBP target enrichment strength. Glass’

Delta is defined as the difference between two sets divided by the standard deviation of the

theoretical set.

Effect size = (true RBP targets - mean (theoretical targets)) / sd (theoretical targets)

Fibroblast replication cohort

To validate observed RBP-target associations in an independent cohort, we retrieved raw RNA-

seq and Ribo-seq data from a set of 20 primary cardiac fibroblast cultures treated with TGF-beta

(Chothani, Schäfer, et al., 2019). Raw data is available on the gene expression omnibus (GEO

submission: GSE131112, GSE123018, GSE131111) repository. For consistency reasons, read

preprocessing,  mapping,  gene expression quantification,  and correlation analysis  were done

identically as in the human heart dataset (see ‘Second alignment’ and ‘Coregulation analysis’

subsections). To confirm RBP regulatory effects on their target genes and thus its replication in

an independent cohort, we quantified the fraction of RBP-target correlations where the direction

(positive or negative correlation) of regulation between RBP and its target genes was similar in

the fibroblast  and human heart  cohort.  Statistical  analysis  was assessed by running 10,000

permutations of the correlation coefficients in the fibroblast cohort and comparing its fraction to

the observed directionality in both the actual and random cohorts.

Analysis of exon splicing

To understand whether RBM20 protein abundance could influence the TE ratios of its targets by

modulating isoform ratios (exon in- or exclusion), we calculated the percentage spliced in (PSI)

for all exons of all known and correlating RBM20 target genes  (Maatz et al., 2014). For this,

mapped human heart full-length (2 × 101nt) mRNA-seq reads were analyzed (Schafer, Miao, et

al., 2015) to improve splice site coverage.
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Network analysis

The Weighted Topological Overlap (wTO) (Gysi et al., 2018; Nowick et al., 2009) analysis was

performed  to  generate  an  RBP-RBP  network  and  identify  master  regulators  of  cardiac

translation. For this, the target TE and RBP expression matrix was randomly resampled 400

times, each followed by a calculation of Spearman’s correlation. The sampling analysis results

were used to calculate a weight score, denoted as wTO. An interaction score with padj  ≤  0.05

was  considered  significant  and  retained  for  visualization  using  Cytoscape  (Shannon  et  al.,

2003).

Minimum free energy in 5’ UTRs

We set out to predict the 5’ UTR secondary structure using RNAfold from the Vienna Package

v2.4  (Lorenz  et  al.,  2011).  For  each  target  transcript,  the  5’  UTR  sequence  was  used  to

calculate the minimum free energy followed by length normalization to observe differences in

UTR complexity between positively and negatively correlating target genes.

General remarks on statistical analysis

Statistical analysis and figure generation were done using R v3.6.2 (Team, 2016). All tools and

methods  used  to  generate  the  results  are  listed  in  the  corresponding  method  sections.

Statistical parameters such as “n”, mean, standard deviation, and significance levels are named

in figures and figure captions. The “padj” denotes the p-value corrected for multiple testing using

the Benjamini-Hochberg approach (Benjamini & Hochberg, 1995).

Abbreviations

mRNA → messenger ribonucleic acid

lncRNA → long noncoding RNA

RBP → RNA-binding protein

TE → translational efficiency

TE-RBP → RBPs regulating target translational efficiency

mRNA-RBP → RBPs regulating target mRNA abundance
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Ribo-seq → Ribosome profiling

mRNA-seq → messenger RNA sequencing

totRNA-seq → rRNA depleted total RNA sequencing

CLIP-seq → Cross-linking immunoprecipitation sequencing

ORF → Open Reading Frame

sORF → short Open Reading Frame

uORF → upstream Open Reading Frame

dORF → downstream Open Reading Frame

TIS → Translation Initiation Site

CDS → coding sequence

UTR → untranslated region

padj → adjusted p-value

DCM → Dilated Cardiomyopathy
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Results

Disclaimer: Collaborators outside and inside of the MDC provided material, personal expertise,

and statistical advice. J. Schulz and colleagues did all microprotein in vitro and in vivo analyses

presented here.

F. Witte worked with me on the transcriptional and translational control in the failing human

heart tissue section. S. v. Heesch and N. Hübner led the study's overall design and fusion of the

wet-lab  and  computational  work. Presented  results  and  many  more  have  been  published

recently  (van  Heesch  et  al.  2019). For  the  section  of  RNA-binding  proteins  (RBPs)  driven

translational  regulation J. Ruiz-Orera,  N.  Hübner  and S. v.  Heesch contributed to the study

design  (https://doi.org/10.1101/2021.04.13.439465).  Figures  used  in  this  thesis  are  directly

extracted from the two papers mentioned above. The Results presented downstream cover two

papers and even though both deal with translational activity in the heart, the text is subdivided in

two parts.

Data generation and quality assessment

To understand the transcriptional and translational regulation in the failing human heart,  we

applied  mRNA-seq,  and  ribosome profiling  (Ribo-seq)  (Ingolia  et  al.,  2009) on  human  left

ventricular biopsies of 65 DCM patients and 15 non-DCM controls (Figure 6). The DCM tissue

was gathered from the left  ventricular  assist  device  (LVAD)  core  at  the  time of  implant  or

transmural samples of explanted hearts. The non-DCM came largely from unused donor hearts.
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Figure  6:  Study  experiment  design  illustrating  the

experimental approach.

https://doi.org/10.1101/2021.04.13.439465


Furthermore, we generated transcriptional and translational information from 6-week old inbred

male BN-Lx  (n = 5)  and SHR (n = 5)  rats  (Witte  et  al.,  2020) and six  mice left  ventricular

biopsies. This information was used in the downstream analysis to investigate differences in

conservation  and  translational  profiles  between  human  and  rodents,  indicating  potential

conservation of translation events across mammals (see “LncRNA translation across human

tissues” section). Reproducibility of translation events across tissues was verified additionally

across six human kidney and liver samples each. Finally, we investigated the cardiac specificity

of novel translation events on 20 primary cardiac fibroblast (Chothani, Schäfer, et al., 2019) and

two iPSC-CM samples.

To ensure high-quality sequenced read fragments at the read mapping step, we first removed

naturally occurring non-mRNA reads such as mitochondrial  RNA, ribosomal RNA, and tRNA

sequences (Figure 7) with an overall high mitochondrial fraction (mean 30.71% in mRNA-seq

and  mean  24.06% in  Ribo-seq).  Interestingly,  within  the  Ribo-seq  dataset,  we  capture  on

average 58.36% ribosomal RNA fragments owned by the nature of the ribosome profiling library

preparation since it is with over 85% the most abundant cellular RNA (Boisvert et al., 2007).

Actively  translating  ribosomes  are  known  to  show  a  footprint  around  28  -  29nt  (Ingolia,

2016) which we expect to see after the removal of adapter sequences. The majority of the

human left ventricle ribosomal footprints match the expected size and fall almost exclusively
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Figure 7: Fraction of different read groups.

Waffle  plot  displaying  the  fraction  of  raw  sequence  reads

derived from tRNA, mitochondrial RNA, ribosomal RNA and

canonical genes of Ribo-seq and mRNA-seq data averaged

across all 80 human heart samples.



within  coding  regions  (Figure  8A  and 8B),  indicative  of  good  quality.  A  small  fraction  of

ribosomal footprints fall within 5’ and 3’ UTR regions, likely derived from translation initiation

and/or elongation of alternative main, upstream or downstream ORFs (Barbosa et al., 2013; Orr

et al., 2021).

Assessment of  active translation is ensured by estimating the P-site position of  every read,

which is usually located at the 12th position of a ribosome protected fragment. A P-site is the

second  nucleotide  of  the  codon  and  the  binding  site  for  the  tRNA  within  the  ribosome.

Ribosomes  periodic  3nt  movement  along  the  ORF  represents  active  translation.  Since

ribosomes  move  codon  by  codon  steps,  their  footprints  tend  to  map  at  the  same relative

position for all reads.

We can use this information to evaluate the periodicity among known protein-coding genes at

sub-codon resolution. For this, we plotted the periodicity for the first 100nt of annotated protein-

coding genes, showing high (> 70%) trinucleotide periodicity on annotated mRNA ORFs (Figure

9), hence indicating good data quality and periodicity.
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Figure 8: Ribo-seq read mapping results.

(A) Dot plot showing the ribosomal footprint length across all 80 samples. (B) Bar plot showing the

percentage of reads falling into coding sequence (CDS) or untranslated regions (5’ and 3’ UTR) of

protein-coding genes.



Detection of actively translating open reading frames (ORFs)

To  capture  the  complete  cardiac  transcriptome,  especially  novel  splice  isoforms  and

unannotated lncRNAs, we generated de novo transcriptomes for human, mouse, and rat using

mRNA-seq data. For this, we ran a de novo transcriptome assembly using StringTie (Pertea et

al., 2015) on every sample and combined the resulting annotations in a meta GTF, preserving

Ensembl gene nomenclature. Novel genes annotated as lncRNA in one of the other two species

were annotated as those and added to the reference annotation/GTF. In the human heart, this

analysis resulted in 117 potential novel and 978 novel isoforms of already annotated lncRNAs.

To enable read comparisons between distinct sequencing types, full-length mRNA-seq reads

were  trimmed  (29nt)  and  mapped  together  with  ribosome profiling  (Ribo-seq)  reads  to  the

extended transcriptome assemblies. We used the resulting BAM files for an unsupervised open

reading frame (ORF) detection using Ribo-seq data with RiboTaper v1.3. Hereby, translation

events were identified using the 3nt periodicity of mapped reads on exonic sequences. This

allows  discrimination  between  ribosome  occupancy  and  identification  of  active  translation

(Figure 10). Each ORF is tested for its 3nt periodicity using a multitaper approach that converts

raw signal (time-domain) to its spectrum of fixed periodic components (frequency domain) using

Fourier transformation (Calviello et al., 2016) across all three reading frames.
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Figure 9: Ribosome footprint quality.

Bar plot showing the P-site position derived from ribosome footprints for the first 100nt of

annotated ORFs (left) and its percentage matching the reading frame (right).



Among  the  12,631  transcribed  genes  in  the  human  heart,  11,387  (91.2%)  show  active

translation,  the  majority  of  which  are located to  the canonical  ORFs (n  =  20,763;  94.69%)

(Figure 11A).

It is known that a gene can encode multiple ORFs by using different reading frames or position

them in a non-overlapping way. Interestingly, we see translation evidence for 1,090 (919 genes)

upstream ORFs (uORFs) and 74 (62 genes) downstream ORFs (dORFs). Upstream ORFs are

known  to  impact  the  translation  of  the  downstream  positioned  main  coding  sequence  by

modulating its biological sequence context (H. Zhang et al., 2019).

Interestingly,  we see 339 short open reading frames (sORFs) -denoted as “microproteins” if

translated- encoded by 169 lncRNAs (Figure 11B), suggesting a hidden layer of yet largely

ignored gene sets that potentially encode proteins with biological function.
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Figure  10:  Schematic  overview  of  RiboTapers  ORF

detection strategy.



LncRNA translation across human tissues

A lncRNA is defined as a gene that lacks a canonical open reading frame (> 100aa), longer than

200nt and with absence of sequence conservation across mammalian species (Ulitsky & Bartel,

2013). Our conservation and length-independent approach allows identification of all possible

ORFs, including those smaller than 100aa whose function remain largely unknown (Makarewich

& Olson, 2017) and need further validation in vivo and in vitro. Among 783 transcribed lncRNAs

in  the  human  heart,  169  (22%)  are  potentially  translated  into  microproteins.  Compared  to

protein-coding genes, translated lncRNAs are, as expected, almost nine times shorter (mean aa

length 426 vs. 47.5) (Figure 12A).
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Figure 11: Ribo-seq reads fraction mapping to the distinct mRNA features

and lncRNAs.

(A) Number  of  translated  distinct  genes features,  including  upstream ORFs

(uORFs),  coding  sequences  (CDS)  and  downstream  ORFs  (dORFs).  (B)

Stacked  barplot  showing  the  fraction  and  number  of  translated  noncoding

genes. The green bars denote translated lncRNAs.



To understand to what extent the novel translation events are cardiac-specific or potentially

undergo  translation  in  other  tissues,  we  set  out  to  study  distinct  microprotein  expression

characteristics.

In the human heart, we detect translation for majority of known cardiac microproteins (longest

ORFs < 100aa) (190/199; 95%) together with recently discovered microproteins proteins who at

the stage of  analysis  were annotated as proteins,  including DWORF  (Nelson et  al.,  2016),

SPAR (Matsumoto et al., 2017), and ALN (also known as C4orf3) (K. M. Anderson et al., 2016).

Using  public  gene  expression  data  provided  by  the  GTEx  consortium  (GTEx  Consortium,

2013) across 44 tissues, we observed that out of 169 translated lncRNAs, 16 are specifically

expressed in  heart  or  muscle tissue,  suggesting  a  muscle-specific  role  for  these translated

elements. The rest of translated lncRNAs show a rather ubiquitous expression. In the GTEx

dataset, 122 lncRNAs are expressed (RPKM > 1) in at least ten and 44 lncRNAs in all tissues.

To understand whether translation of lncRNAs also occurs in other human tissues and to what

extent our observations are reproducible, we generated translatomes for six liver and kidney

tissues, each. Even though the tissues were collected independently, we found 71/169 (42%)

and 116/169 (69%) lncRNAs expressed in the liver and kidney, respectively. Of these, 56 (liver)

and 87 (kidney) are translated. Altogether 50 lncRNAs are translated in all three tissues (Figure

13).
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Figure 12: Translated lncRNAs in human and rodents.

(A) Histogram  showing  the  length  distribution  of  translated  lncRNA  sORFs  in  human  hearts.

(B) Doughnut chart with transcribed and translated lncRNAs in human, rat and mouse hearts.



Furthermore, 72 (52 genes) ORFs had been previously identified in human cell lines and stored

at  the sORFs.org  (Olexiouk  et  al.,  2016,  2018),  a  public  data base collecting  all  published

translated lncRNAs across all possible organisms, tissues and cell lines. Our dataset underlines

that lncRNAs possess the capability to produce novel microproteins potentially across several

human tissues and cell lines.

To understand the extent of conservation among translated lncRNAs, we used a PhyloCSF

based pipeline (Mackowiak et al., 2015) to check for amino acid conservation of their translated

lncRNAs. For 79 nucleotide sequences of the translated lncRNAs could be aligned to hominid

species (chimp, gorilla, and orangutan), 43 to mammals, and the remaining 16 are specific to

human.  Overall,  conserved  sORFs  are  mostly  absent  in  rodents  and  mostly  restricted  to

primates, suggesting that these proteins are evolutionary young (Ruiz-Orera & Albà, 2019) and

with yet uncharacterised functions. Apart from assessing the  conservation at the amino acid

level, we used UCSC Batch Coordinate Conversion (LiftOver) utility to investigate the positional

conservation of translated human lncRNAs in  rodents. For 76 out of 169 lncRNAs, positional

conservation  was observed in  the same relative  orientation to their  sense mRNAs  (Ulitsky,

2016). To check for potential translation of lncRNAs in model organisms, we used in-house rat

and mouse hearts transcriptomes and translatomes and discovered similar translation rates (13
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Figure 13: Ubiquitously translated lncRNAs.

Heatmap  of  scaled  Ribo-seq  expression  (scaled  DESeq2

normalized  counts)  values  for  50  translated  lncRNAs  in

human heart, liver and kidney tissue.



- 22%) of expressed lncRNAs as in the human heart (Figure 12B). Among the 76 positionally

conserved lncRNAs, 18 are also translated in rodents, and seven share the same translation

initiation site. As denoted previously,  translated lncRNAs are expressed across most human

tissues  and  show  translation  evidence  in  both  kidney  and  liver,  suggesting  a  general

translational behaviour that has not been studied yet.

Detection of microproteins in human hearts in vitro and in vivo

To validate  the predicted translated  sORFs  in vitro and  in  vivo, we first  performed  in  vitro

translation (IVT) assays on 58 randomly selected translated lncRNAs. Forty-four (75%) of these

produced stable proteins,  and subsequent  mutation of  the start  codon prevented translation

(Figure 14),  confirming presence and translation  capability  resulting in  a detectable  protein

signal.

In  vivo  protein  detection  using mass spectrometry (MS) datasets of  short  proteins  such as

signalling proteins with low dynamic range and abundance is particularly challenging in cardiac

tissue  and  can  result  in  false-positive  results  (Bánfai  et  al.,  2012;  Bazzini,  Johnstone,

Christiano,  MacKowiak,  et  al.,  2014;  Low et  al.,  2013;  Mackowiak et  al.,  2015;  Nesvizhskii,

2014; Omenn et al., 2017; Slavoff et al., 2013).

For the identification of microproteins  in vivo, we used the deepest human heart shotgun MS

dataset to date  (Doll et al.,  2017) together with the in-house generated iPSC-CM proteome,
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Figure 14: In vitro detection of translated lncRNAs.

Schematic  of  the  in  vitro  translation  (IVT)  approach  (left)  and  AUG

mutagenesis of selected lncRNA sORFs (right). Predicted product molecular

weight in kilodaltons (kDa) for each candidate shown on the bottom.



resulting in the identification of 140/339 (41.29%) sORF encoded by 93/169 (55.02%) translated

lncRNAs.  For 28 microproteins,  we see unique peptide evidence in  one sample,  while  100

microproteins are identified in more than one sample. To increase the true positive detection

rate and overcome mass-specific issues such as detection of microproteins with low dynamic

range, we next applied a high-throughput selected reaction monitoring (SRM) assay (Picotti et

al.,  2010).  It  uses synthetic  signature  peptides  to  detect  the investigated candidate's  exact

fragmentation pattern, thus increasing the sensitivity and specificity of microprotein detection.

Application  of  this  method  to  five  human  hearts  (two  replicates  each)  resulted  in  the

identification of 76 out of 137 randomly selected microproteins (55.4%) translated from 50/83

(60.2%) lncRNAs.

The  presented  in  vitro and  in  vivo methods (IVT  assays,  shotgun MS and  SRM) methods

elucidate that it is necessary to combine approaches to validate the translation of microproteins

that otherwise would have remained undetected.

Functional characterization of translated lncRNAs

Among  the  identified  translated  lncRNAs,  27  human  and  5  mouse  candidates  have  been

previously shown to host a noncoding function, including LINC-PINT (also known as lincRNA-

Mkln1)  (Huarte et al., 2010),  JPX  (Tian et al., 2010),  CRNDE  (Graham et al., 2011),  NEAT1

(Clemson et al., 2009),  DANCR (Kretz et al., 2012),  BANCR (Flockhart et al., 2012),  GATA6-

AS1 (also known as lncGATA6) (Zhu et al., 2018), and the heart-function related myheart (Han

et al., 2014), chaer (Zhihua Wang et al., 2016), UPPERHAND (also known as UPH or HAND2-

AS1) (K. M. Anderson et al., 2016), ZFAS1 (Y. Zhang et al., 2018) and TRDN-AS (also known

as  RP11-532N4.2)  (L. Zhang et al., 2018) (Figure 15A and 15B). Of which  NEAT1, GATA6-

AS1, and UPPERHAND are positionally conserved and translated in human and rodent hearts.

Furthermore,  we  detect  the  microproteins  from  these  lncRNAs  in  vivo.  Interestingly,  22

functionally  characterized lncRNAs are also translated in  the kidney and liver,  showing that

lncRNAs likely have noncoding and coding functions.
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Several of these lncRNAs are antisense to protein-coding genes known to be cis-regulatory (K.

M. Anderson et al., 2016; Han et al., 2014; L. Zhang et al., 2018). To test for local coregulation

of all translated lncRNAs, we extracted lncRNA-mRNA sense-antisense pairs and identified 18

with  strong  correlation  (Spearman's  rho:  0.52  -  0.76;

p = 3.3 × 10-5  -  1.9 × 10-12)  (Figure 16A)  of  translated lncRNAs and protein-coding genes,

including some cardiac transcription factors (HAND2, TBX5, and GATA6), and some important

regulatory  or  structural  cardiac  genes  (CORIN,  TRDN, and  TNNI3).  We  see  a  significant

decrease in correlation during the translation except for  TRDN-TRDN-AS1 (Spearman's rho:

0.23 vs. 0.53; p = 0.0136) (Figure 16B).  TRDN-AS1 has been shown to  cis-regulate cardiac

and skeletal muscle triadin production  (L. Zhang et al., 2018). The translational regulation we

observe in the human heart suggests functional relatedness besides transcription.
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Figure 15: Genome browser examples of translated lncRNAs.

(A) Genome browser example of the translated lncRNA BANCR (reverse strand), showing mRNA-seq

Ribo-seq coverage across the whole gene followed by P-sites localization, canonical and de novo

gene annotation. Zoom into P-sites localization of the sORF, which starts upstream of the canonical

gene annotation. In-frame P-sites are colored blue. (B) Genome browser zooms into P-site tracks of

three translated lncRNAs: LINC-PINT, DANCR and UPPERHAND (HAND2-AS1). In-frame P-sites are

colored blue and red and green for +1 and +2 frames, respectively.



Apart the potential function resulting from coregulation to sense mRNA, genes involved in the

same  molecular  pathway  will  likely  show  strong  coregulation  independent  of  the  genomic

localization (Lee et al. 2004; Pers et al. 2015). For this, we calculated genome-wide gene-gene

correlation followed by hierarchical clustering. We identified a cluster significantly enriched in

translated lncRNAs (93 out of  169; p = 2.17 × 10-15;  Fisher's  Exact Test) along with genes

enriched in nuclear-encoded mitochondrial genes (GO:0005739 mitochondrion; padj = 8.83 × 10-

149) (Figure 17A). Surprisingly among the 93 translated lncRNAs within the cluster, we observed

three candidates (RP11-140K17.3,  PRR34-AS1,  MIR4458HG) that show a particularly strong

correlation with genes involved in all five complexes responsible for oxidative phosphorylation

(OXPHOS;  KEGG:hsa00190;  padj =  6.43  ×  10-40)  (Figure  17B),  suggesting  a  role  in

mitochondria, particularly ATP production.
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Figure 16: Sense-antisense correlation of translated lncRNAs and their sense mRNAs.

(A) Bar pot showing translated lncRNA and sense mRNA Spearman rank correlation coefficients at

both transcriptional (blue) and translational (red) level. “*” indicates a negative correlation between

MBNL1-AS1 and MBNL1.  Protein  coding genes are shown in  bold.  (B) Scatterplots  showing the

correlation between TRDN and TRDN-AS1 at both transcription and translation across all 80 human

heart samples.



To determine individual microprotein functions, we applied a GO enrichment (Reimand et al.

2016) analysis on mRNAs that show a strong correlation (Spearman’s rho ≥ 0.5) with a lncRNA

across  all  samples.  Correlating  targets  were  checked  for  their  biological  role  using  GO

enrichment analysis, indicating a shared molecular function of the translated lncRNAs.

Clustering of the resulting GO terms resulted in 42 translated lncRNAs with shared and distinct

biological processes such as catabolic process, transcription, translation or DNA binding. The

majority (22 lncRNAs)  showed enrichment in mitochondria localized functions (Figure 18A).

The genome-wide  lncRNA-mRNA correlation  analysis  reveals  the involvement  of  translated

lncRNAs in mitochondrial processes and thus their localization.

An exciting example is PDZRN3-AS1, a lncRNA that encodes a microprotein which colocalizes

to mitochondria and interacts explicitly  with RMND1 in a immunoprecipitation (IP)-MS assay

(Figure 18B).  RMND1 is  known to  colocalize  in  the  inner  mitochondrial  membrane  and is

required  to  translate  OXPHOS subunits  (Janer  et  al.,  2015),  making  this  protein  a  perfect

candidate  for  follow  up.  For  a  subset  of  18  translated  lncRNAs,  we  verified  mitochondrial

colocalization using immunofluorescence (IF) staining upon overexpression in HeLa cells (see

three selected examples; Figure 18C).
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Figure 17: Translated lncRNAs correlate with OXPHOS genes.

(A) Heatmap of all translated gene-gene correlations. The Black dotted box indicates co-clustering of

translated lncRNAs (black bar) and genes encoding OXPHOS proteins (green bar)  (B) Circos plot

visualizing  three  translated  lncRNAs  and  coregulated  OXPHOS proteins.  Each  line  represents  a

correlation coefficient ≥ 0.5.
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Figure 18: Biological function and localization of translated lncRNAs.

(A) Heatmap  of  clustered  GO  terms  for  22  translated  lncRNA  coregulated  with  mitochondrial

processes.  (B) Vulcano  plot  of  immunoprecipitation  (IP)-MS results  for  PDZRN3-AS1.  Significant

(two-sided  T-test;  padj  ≤  0.005)  interactions  are  colored  in  yellow.  (C) Immunofluorescence  (IF)

showing mitochondrial localization for three selected microproteins (right). Scale bars represent 20

μM. Predicted α-helical (left) 3D structures were modelled by I-Tasser.



Another  layer  of  computational  methods  that  allow  for  molecular  function  prediction  is  the

analysis of protein sequence features. Using SignalP (Petersen et al., 2011), we predicted the

presence  and  location  of  a  cleavage  site  for  three  microproteins  suggesting  a  potential

secretory function. Furthermore, TMHMM (Krogh et al., 2001) predicted for seven microproteins

the presence of a transmembrane helix with a range of 13 - 38 amino acids. Finally, DeepLoc

(Almagro Armenteros et al., 2017) predicted subcellular localization for all translated lncRNAs.

Strikingly,  112 (33%) ORFs were predicted to have mitochondrial  localization supporting our

observation that many translated lncRNAs likely have a function in this cellular compartment.

Transcription and translation of cardiac circRNAs

Besides lncRNAs, circular RNAs (circRNAs) are a novel class in the noncoding family that has

been shown to harbour the potential of being translated (Legnini et al., 2017; Pamudurti et al.,

2017; Y. Y. Yang et al., 2017). CircRNAs are characterized by a closed-loop structure missing

both the 5’ cap and 3’polyA tail compared to mRNAs. Even though circRNAs are derived from

linear  precursor  RNA transcribed  by  RNA  polymerase  II,  they  finally  form  a  circle  via  the

backsplice junction, requiring polyA independent sequencing techniques such as totRNA-seq

data for circRNA detection.

To capture circRNAs in the human heart, we used totRNA-seq derived from the same cardiac

tissue as the mRNA-seq and Ribo-seq data whereas mRNA-seq data was used as negative

control. Even though both data sets showed similar amounts of mapped reads to the genome,

backsplice  junction  reads  were  almost  exclusively  located  to  totRNA-seq  (Figure  19A).

Backsplice  junctions  within  mRNA-seq data likely  come from transcripts  with exon shuffling

(Gilbert,  1978; Smithers et al.,  2019), repeats  (Rigatti  et  al.,  2004), or falsely aligned reads

between homologues genes. Using find_circ2 we detected 9,198 circRNA of which 324 were

present  in  both  totRNA and mRNA data sets.  To avoid  false  signals,  we applied  stringent

threshold requiring a circRNA with mRNA evidence to show at least 100 times more totRNA

reads  (Figure  19B).  Removing  likely  false  circRNAs,  we  remained  with  8,878  circRNAs

encoded by 3,181 genes of which 1,324 (14,9%) showed 15 more find_circ2 warnings than in

the remaining 7,554 (85,1) circRNAs (Figure 19C), indicating robust detection quality for the

majority of the candidates.
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A large fraction of the detected circRNAs (6,808; 76 %) overlaps with the publicly  available

datasets (Glažar et al., 2014; Khan et al., 2016) (Figure 20A and 20B), showing that we can

reproduce circRNAs but also find novel and potentially cardiac-specific candidates.

To identify ribosome-associated circRNAs, we first mapped ribosomal footprints that did not 

map to the linear transcriptome to the identified back-splice junctions. Requiring at least three 

unique and five reads covering the back-splice junction (Figure 20A), we identified 40 

ribosome-associated circRNAs encoded by 39 genes, including the well-known microRNA 

sponge circCDR1-AS (Piwecka et al., 2017), circCFLAR (Papaioannou et al., 2020) as well as 

cardiac circRNAs such as circMYBPC3 (Tan et al., 2017), circRYR2 (Tan et al., 2017), and 

circSLC8A1(Holdt et al., 2018; Tan et al., 2017) (Figure 20C). To ensure that we look at 

circRNAs and not linear transcripts with similar features, we treated our circRNAs with RNase 

R. Their unique circular structure shows resistance and is thus a perfect target for validation (M. 

S. Xiao & Wilusz, 2019). For 16 out of 18 tested circRNAs, we see resistance to the nuclease, 

suggesting their existence and thus potential translation due to the previously mentioned 

ribosome association.
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Figure 19: CircRNA identification statistics.

(A) Abundance of mapped reads and reads matching backsplice junction as identified by find_circ2 in

both mRNA-seq and totRNA-seq. The mRNA-seq data set is used as a negative control and thus

should not contain backsplice junction reads.  (B) Scatter plot of the number of backsplice junction

reads for 324 circRNA identified by totRNA-seq and mRNA-seq data. CircRNA with 100-fold higher

totRNA-seq reads are separated by a diagonal line.  The other circRNAs with abundance in both

totRNA-seq and mRNA-seq  likely result from trans-splicing and/or exon shuffling and are removed

from further  downstream analysis.  (C) Scatter  plot  of  warning  and support  flags for  all  identified

circRNAs. Ribosome-associated circRNAs are indicated as red triangles.



To confirm the specificity of the alignment, we mapped Ribo-seq reads to 10,000 simulated sets

of size- and length-matched backsplice junctions. The resulting statistics showed a significantly

lower mappability to the simulated backsplice junctions than to the observed set, confirming

circRNA-ribosome specificity of the association (padj = 1.5 × 10-4) (Figure 21A). Five of the 40

candidates  have  already  been  reported  as  translated  in  human  (Y.  Y.  Yang  et  al.,  2017),

otherwise we did not see any other translated circRNAs that have been previously described.

Using  the  same  heart  mass-spectrometry  dataset  (Doll  et  al.,  2017) as  for  the  translated

lncRNAs, we searched for potential peptides derived from backsplice junction regions and found

unique  peptide  evidence  for  6  out  of  40  circRNAs  (23%)  (Figure 21B).  These discoveries
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Figure 20: Identification of translated circRNAs.

(A) Schematic visualization of ribosome-associated circRNAs detection at the back-

splice junction site and corresponding thresholds. (B) Venn diagram showing a three-

way overlap between the heart dataset, previously identified heart circRNAs (Khan et

al.,  2016) and  circBase  (Glažar  et  al.,  2014).  (C) Genome  browser  view  of  the

translated circRNA SLC8A1. Ribo-seq, mRNA-seq and totRNA-seq read coverage for

pooled  SLC8A1  exons.  Exon  2  forms  the  ribosome-associated  circRNA  with

significantly increased totRNA abundance than the linear exons (right side).



suggest  transcription  and  translation  of  circRNAs  occurs  in  the  human heart  and  warrants

further investigation of their biological function. Though futures studies require careful analysis

during circRNA detection and validation using mass spectrometry which may show evidence

close to the noise level (Hansen, 2021).

Transcriptional and translational regulation in human hearts

We can study quantitative transcriptional and translational regulation in human diseased and

unaffected hearts with the presented dataset. For this, gene expression counts for both mRNA-

seq and Ribo-seq datasets were combined and jointly  normalized to achieve  comparability.

Normalized matrices were used for differential gene expression analysis with DESeq2 (Love et

al.,  2014) on  both  measured  levels.  We observed  2,660  and  2,648  genes  with  differential

expression at transcriptional and translational level, respectively. For 964 genes, transcriptional

differences  are  forwarded  towards  the  translation  (Figure  22),  meaning  they  showed

differences in transcription carried over to the translational level.
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Figure 21: CircRNA detection sensitivity.

(A) Combined dot and scatter plot showing mappability of ribosome footprints to simulated back-splice

junctions (empirical padj = 1.5 x 10-4).  (B) Table of all  ribosome-associated circRNAs. Blue colored

circRNAs show mass-spec evidence.



We correlated translation levels of all 4,344 differentially expressed genes across all 80 samples

to identify processes affected by the failing heart. The resulting correlation coefficients were

hierarchically clustered and subdivided into 30 clusters, with 22 showing significant GO terms

(The Gene Ontology Consortium, 2019). Each cluster contains genes involved in the process-

and pathway-specific regulation of the human heart on a transcriptional or translational level

(Figure  23A).  They  show enrichment  in  genes  encoding  proteins  involved  in  transcription,

translation, and immune response but also processes known to be hallmarks of the diseased

heart, such as ECM, sarcomere or mitochondrion. It is important to mention that some cluster

categories, such as ECM, are divided into five clusters, report distinct groups of genes with

potentially different modes of regulation that warrant further investigation.
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Figure 22: Differential expressed genes. 

A  Fold-change  -  fold-change  (FC/FC)  scatterplot  for  all

differentially expressed genes between DCM and control

samples.



Principal-component  analysis  of  transcriptionally  and  translationally  differentially  expressed

genes  together  with  average  fold-change  values  revealed  individual  cluster  expression

contribution (Figure 23B). This separation divides clusters into gene sets that are largely up- or

downregulated  between  DCM  and  unaffected  controls  or  show  transcriptional  and/or

translational regulation.

As mentioned before, the clusters show diverse modes of regulation and involvement in distinct

biological  processes.  Among  them,  we  see  examples  like  four  transcriptionally  and

translationally downregulated mitochondrial clusters, representing mitochondrial dysfunction in

the failing heart  (Okonko & Shah, 2014). Besides, we find transcriptional upregulation of the

sarcomere cluster  or  translational  upregulation  of  five extra-cellular  matrices (ECM) clusters

indicating  excessive  generation  of  ECM  proteins  during  cardiac  fibrosis  (L.  Li  et  al.,

2018) (Figure 24).

Examples in Figure 24 show little differential behaviour at the transcriptional level but a strong

change at the level of translation and would have remained undetected otherwise.

The presented dataset  reveals  many process-specific  pathways that  are under  translational

control.  Still,  examples  like  mitochondrial  function  or  sarcomere  proteins  that  are  under

transcriptional  control  highlight  the  importance  of  both  transcriptional  and  translational

expression levels in the heart.
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Figure 23: Process-specific regulation.

(A) Heatmap with hierarchically clustered gene-gene correlation (Ribo-seq) values for all differentially

expressed genes (left) and GO enrichment categories for individual clusters (right).  (B) Scatter plot of

the  first  two  principal  components  which  separates  clusters  from  (A)  into  transcriptionally  and

translationally regulated groups.



NOTE: The following part of the thesis uses the 80 human left ventricular heart samples from

patients with dilated cardiomyopathy (DCM) and unaffected controls to study RBP regulatory

roles in the human heart.  Due to the time difference between the first and second part of the

work, several analysis parts, such as GO enrichment analysis, were done with different release

versions, denoted in the corresponding method sections.

RNA-binding protein abundance regulates target mRNA and translational 
efficiency levels

To understand the potential regulatory role of RBP levels (Ribo-seq) on mRNA abundance and

translational  efficiency  (TE),  we  collected  and  reanalysed  CLIP-seq  derived  protein-RNA

interactions for 142 ubiquitously expressed RBPs (Van Nostrand et al., 2020) together with the

muscle-specific splicing factor RBM20 (Maatz et al., 2014) (Figure 25A).
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Figure 24: Coregulated gene clusters in the heart.

Bar plot of functionally coregulated clusters. Every bar represents a unique gene, and every sub-

panel depicts fold-change (FC) at transcription, translation or the difference between these two.

Dots show genes related to the GO terms shown at the top. On the right, the top 5 GO terms and

the adjusted p-value for each example are given.



In  the  first  step,  we  calculated  the correlation  coefficients  of  RBPs protein  abundance  (as

measured by Ribo-seq) against translational efficiency levels of all  cardiac expressed genes

(11,387) across all 80 human heart samples, followed by hierarchical clustering of the resulting

correlation matrix. To gain knowledge about RBP with quantitative dependency to target gene

translational control, we checked for already known and/or predicted protein-protein interaction

among  RBP  clusters  using  the  STRING  database  (Szklarczyk  et  al.,  2019) (Figure  25B).

Indeed, the majority of the proteins show already known or predicted interactions though for

some RBPs interactions partners are missing.

In the next step, we calculated the correlation between RBP proteins levels with target mRNA

abundance and TE and quantified the frequency of significant associations for each RBP. The

association  were  statistically  evaluated  by  generating  100,000  matched  sets  of  randomly

simulated mRNA targets as described previously (Chothani, Schäfer, et al., 2019). The analysis

resulted in 58 RBPs that showed significant (empirical padj ≤ 0.05) enrichment with target mRNA

abundance association (hereafter called “mRNA-RBPs”) and 37 RBPs with target translational

efficiency (hereafter called “TE-RBPs”) (Figure 26A). Among the significant mRNA-RBPs, we

find the known tumor suppressor and splicing factor RBM5 (138 correlating targets; padj = 2.83 ×

10-5; Glass’ Δ = 27.2) (Sutherland et al., 2010), or the non-canonical translation initiation factor
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Figure 25: RBP abundance and known interactions.

(A) Bar plot showing expression of 143 RBPs across all GTEx tissues.  (B)  STRING protein-protein

interactions networks of six coregulated RBP clusters.



EIF4G2,  an  RBP that  correlates  with  target  gene  translational  efficiencies  (235  correlating

targets; padj = 5.26 × 10-5; Glass’ Δ = 6.3) (Liberman et al., 2009; Weber et al., 2021).

Reassuringly,  25  of  37  TE-RBP  showed  reproducible  regulation  of  target  translational

efficiencies  in  an  independent  cohort  of  primary  cardiac  fibroblast  translatome  (n  =  20;

(Chothani, Schäfer, et al., 2019) (Figure 26B).
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Figure 26: Ubiquitously expressed RBPs predict mRNA abundance and TE.

(A)  Two-column  heatmap  of  Glass’  delta  scores  quantifying  the  effect  size  of  the  RBP-target

association in the human heart. For each category, only the significant values are shown. For three

selected  RBPs,  histograms  illustrate  the  theoretical  distribution  vs.  actual  observation  and  the

significance of the comparison. (B) Dot plot showing the fraction of RBP-target correlations that can

be replicated in an independent cohort of primary cardiac fibroblasts.  For each RBP, the fraction

replicated correlations on the replication cohort and randomized set is shown in brown (significant) or

red (non-significant). The size of the dots indicates significance (-log10(padj)). Grey dots indicate the

average fraction of replicated correlations in the randomized set, and error bars show the mean value

with standard deviation (SD).



Bi-directional regulation of translation by known and unknown factors

To find RBPs that coordinately regulate target translational efficiency, we clustered significant

correlations of all 37 TE-RBPs and their CLIP-seq targets. This divides RBPs and targets into

two  groups  of  opposite  directions  of  regulation  (Figure  27A),  suggesting  cooperative  or

competitive regulation. The two sets of target genes are enriched in mRNA metabolism (padj
 =

6.17 × 10-54) and endoplasmic reticulum (padj = 1.82 × 10-7).

Example like the nuclear splicing factor U2AF2 and the protease UCHL5 show opposite effects

on shared target genes (Figure 27B), including MYL6 and KPNA4, whose effect on translation

can be replicated independently in the cardiac fibroblast translatome cohort (Figure 27C). For

some RBPs (e.g. UCHL5 and FAM120A), interaction has not been described to our knowledge

and are not visible in the STRING database (Szklarczyk et al., 2019), thus suggesting potential

coordinated models of regulation and interaction that warrant further investigation but also as a

resource for studying the impact of RBP abundance on the targets quantitative levels.

We  used  all  37  TE-RBPs  to  identify  RBP  master  translational  regulators  and  an  internal

hierarchy  of  how translation  is  coordinated.  For  this,  we  generated  a  weighted  topological

overlap (wTO) (Gysi et al., 2018; Nowick et al., 2009) network which assigned 5 out of 37 TE-

RBPs including  four  splicing  factors;  HNRNPM,  EFTUD2,  U2AF2,  SF3A3,  and a  ribosomal

protein (RPS3) as central regulators (Figure 28).

Only  RPS3  (Dong  et  al.,  2017) and  HNRNPM  (Ainaoui  et  al.,  2015;  T.-M.  Chen  et  al.,

2019) have been previously associated with translational regulation but also splicing factors with

yet unknown roles. The high number of splicing among the central translational regulators (14

out of 37; 38%) can be explained by the relatively high number of splicing factors in the starting

RBPs (49 splicing RBPs out of 143 included RBPs; 34%) set included in this study and do not

display any signs of enrichment. 

The  presented  results  suggest  that  ubiquitously  expressed  splicing  factors  are  involved  in

translational  regulation.  Even though the same machinery is  not  known,  this  effect  may be

achieved by the splicing machinery or secondary effects such as the decision of which isoform

is being produced.
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Figure 27: CLIP-seq identifies transitionally regulated targets.

(A) Heatmap of hierarchically clustered translational efficiency correlations for all 37 TE-RBPs and

their CLIP-seq targets. TE-RBP targets genes are separated into two groups with opposite TE effect

whose genes show enrichment in mRNA metabolism and endoplasmic reticulum.  (B) Scatter plots

showing correlation of  heart  (C) and primary cardiac fibroblast  between UCHL5 and U2AF2 and

translational  efficiencies of  two shared target  genes KPNA4 and MYL6.  UCHL5 and U2AF2  with

opposite effects on target genes,  indicating competitive regulation reproducible in an independent

cohort. Spearman’s correlation coefficients and adjusted p-values are displayed.



RBM20 dependent isoform production correlates with translational 
efficiency

Besides  the  splicing  factors  involved  in  the  potentially  central  role  of  target  regulation,  we

identified 27 out of 37 TE-RBPs splicing factors that have not been associated with translational

regulation  yet.  Among  these  27  splicing  factors,  our  attention  was  drawn  by  the  disease-

relevant and muscle-specific splicing factor RBM20, whose expression significantly correlated

with TE of 163 (out of 561 total evaluated targets; Glass’ Δ = 7) experimentally validated target

genes (Figure 29A) but showed no significant impact on mRNA abundance.

RBM20 showed a positive correlation to target genes that primarily consist of sarcomere genes,

including TTN (Guo et al., 2012; Herman et al., 2012) and TNNI3K (Theis et al., 2014; Xi et al.,

2015),  showing  enrichment  for  muscle  function  processes  (GO:0003012;

padj  ≤  5.97  × 10-16)  (Figure 29A  and 29B).  To explore the possible  relation  between RB20

splicing and the efficiency of mRNA translation, we associated exon splicing rates of known

target  genes with  mRNA translational  efficiency.  For  66 out  of  163 (40.10%) translationally

regulated RBM20 target genes, we find percent spliced in (PSI) rates correlating with RBM20
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Figure 28: Network of coregulated RBPs.

RBP-RBP network based on weighted topological overlap (wTO) scores with

centrally  positioned  5 RBPs (EFTUD2,  RPS3,  U2AF2,  HNRNPM,  SF3A3)

that show robust correlation to at least five target genes.



abundance. Among them, well-studied gene TTN,  whose N2BA-specific I-band specific exons

splicing rates negatively correlate with overall TTN TE (Figure 29C).

Meaning  that  I-band  specific  inclusion  has  a  negative  effect,  and  their  removal,  such  as

executed by RBM20, positively affects the overall TTN translational efficiency. We observed this

isoform-specific  decrease  in  translational  levels  previously  (van  Heesch  et  al.,  2019).  The

analysis presented here provides a mechanistic explanation of this TTN N2BA specific property

which might be a general condition for other sarcomere proteins as well.

Our observation showed that  RBM20 induced splicing rates have an unexpected impact on

translational efficiency potentially generalizable for most muscle-specific RBM20 targets.

66

Figure 29: RBM20 as a regulator of translational efficiency.

(A) Single column heatmap representing hierarchically clustered Spearman’s rho correlation values of

RBM20 and translational efficiency of its predicted CLIP targets. Significantly correlating targets (n =

163; padj ≤ 0.05) and those enriched in the GO term “muscle process” (GO:0003012) are highlighted in

orange and blue, respectively.  (B) Scatter plots showing the correlation between RBM20 and the

translational efficiency levels of two sarcomere genes, TTN and TNNI3K. Correlation coefficients and

adjusted p-value are displayed. (C) Scatter plot showing the correlation between RBM20 translation

level and TTN:exon156 PSI. Correlation coefficients and the adjusted p-value is displayed (left). Box

plot showing the average difference of TTN I-band isoform-specific TEs between TTN isoforms N2B

(ENST00000460472) vs. N2BA (ENST00000591111) (p-value = 0.034).



The presented results highlight potential capacity splicing factors such as RBM20 to regulate

target TE by mutual exclusion of exons with inefficient codon translation rates or exons that

negatively  impact  stability  or  structure  of  the  transcript,  resulting  in  a  different  protein

composition synthesized (Nott et al., 2004; Zhou et al., 2016).

Dual-function RBPs monitor mRNA abundance and translational efficiency 
levels by targeting distinct target sets

As mentioned previously, we observed 58 RBPs enriched in target mRNA abundance and 37

with translational efficiency levels, of which 21 could be associated with both traits.

To understand whether this dual association is linked (high mRNA abundance drive increase in

TE), we first checked their sets of target genes and found a very limited overlap in target genes

between either trait for all 21 RBPs (16.71 ± 8.19%; Figure 30A), which decreases for the most

strongly correlating targets (1.09 ± 1.49%; r > 0.5; Figure 30B). To support our observation, we

compared each RBP trait-specific effect size and found no relation between  them, such as a

carry-over effect from mRNA expression to translational efficiency, supporting our observation

that individual RBPs show involvement in the regulation of distinct molecular traits. From now

on, these RBPs will be denoted as “dual-function” RBPs, that modulate their function by binding

to distinct target genes. One example is multi-functional RBP DDX3X that correlates with mRNA

expression  of  339  target  mRNAs

(padj =  2.83  ×  10-5;  Glass’  Δ  =  6.9)  and  the TE of  730  target  mRNAs  (padj =  5.25  ×  10-5;

Glass’ Δ = 11.89) but only 43 targets overlap with between sets (Figure 30A).
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Interestingly, we observed opposite regulatory behaviour of DDX3X on mRNA targets (positive

correlation) and TE (negative correlation). Besides DDX3X, three other RBPs (DDX6, NKRF,

GEMIN5)  showed  an  overall  negative  effect  on  translation  but  a  positive  effect  on  mRNA

abundance and one RBP with the exact opposite behaviour (FAM120A). The remaining RBPs

show concordant regulation on their target genes at both traits.

Furthermore,  mRNA abundance  and TE targets  of  dual-function  RBPs show enrichment  in

different biological processes, resulting in entirely different biological outcomes. For example,

the dual-function RBPs DDX3X and UCHL5 TE targets show enrichment for genes involved in

RNA splicing  (GO:0008380;  padj =  7.70 × 10-30)  but  no clear  enrichment  among the mRNA

targets.
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Figure 30: Distinct target sets of dual-function RBPs.

(A) Two-column  heatmap  of  Glass’  delta  scores  quantifying  the  effect  size  of  the  RBP-target

association in the human heart. For the set of 21 RBPs involved in both mRNA abundance and TE

regulation, individual overlaps of target genes are shown as a Venn Diagram with an absolute number

of significantly correlating target genes.  (B) Network displaying dual-function RBPs and their target

interaction of both mRNA-RBPs (green) and TE-RBPs (brown) for strong (r ≥ 0.5) correlating targets.



Another  dual-function  RBP  is  G3BP1,  whose  mRNA  targets  show  enrichment  for  genes

involved  in  localization  to the nuclear  body (GO:1903405;  padj =  5.13 × 10-12),  whereas TE

targets encode for proteins involved in RNA splicing (GO:0008380; padj = 1.61 × 10-10). Among

them, we also find examples like PUM1 that show for both molecular traits enrichment in targets

coding  for  proteins  involved  in  mRNA  processing  (GO:0006397,

padj TE = 2.64 × 10-22 and padj mRNA = 6.40 × 10-13) (Figure 31A).
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Figure 31: Dual-function RBPs regulate distinct sets of target genes.

(A) For four selected dual-function RBP examples (DDX3X, G3BP1, PUM1, and UCHL5), histograms

showing the significance of RBP-target correlations and dot plot with the 12 most significant parental

GO terms are displayed for both traits (mRNA and TE) are displayed.  (B) Box plots showing the

difference between transcript, 5’ UTR, CDS, and 3’ UTR sequence length in nucleotides for mRNA vs.

TE of corresponding targets are displayed.



Dual-functionality achieved through affinity for CDS length and 5’ UTR 
structure

Besides  changes in  RBPs interactome,  dual-functionality  can be achieved  through  context-

specific differences in subcellular localization (Buchan, 2014), interaction partners (Cirillo et al.,

2020; W. Yang et al., 2019), or the presence of multiple RNA binding domains (Müller-McNicoll

& Neugebauer, 2013) by modulating the set of recognized target genes. Based on published

immunofluorescence imaging-based evidence of subcellular RBP localization (Van Nostrand et

al.,  2020),  13  out  of  21 dual-function  RBPs show localization  to both nucleus and cytosol,

suggesting localization-dependent function. In the next step, we looked at the relative binding

position  of  CLIP binding  sites  within  a target  mRNA  (i.e.  the  position  of  binding  within  the

mRNA: 5’ UTR, coding sequence, 3’ UTR or intronic). We could not identify great differences in

binding  position  between  both  traits.  Though  for  DDX3X and eight  other  RBPs (DROSHA,

FASTKD2, G3BP1, GEMIN5, PRPF8, PUM1, U2AF2, and UCHL5), we observed a significant

change in target transcript CDS length, either increasing or decreasing between mRNA and TE

targets (Figure 31B).

The strongest difference in CDS length we observed for GEMIN5 (decrease for TE targets;

2,226nt vs. 1,519nt; padj= 3.66 × 10-9) length were seen for GEMIN5 (decrease for TE targets;

2,226nt vs. 1,519nt; padj= 3.66 × 10-9), PRPF8 (decrease for TE targets; 2,243nt vs. 2,076nt;

padj=  1.03  ×  10-8),  DDX3X  (decrease  for  TE  targets;  1,659nt  vs.  1,376nt;  

padj= 2.81 × 10-7) and G3BP1 (increase for TE targets; 1,985 vs. 2,798nt; padj= 6.11 × 10-8).

RBPs like  DEAD-box helicase  eIF4A (as  part  of  eIF4F complex)  (Svitkin  et  al.,  2001) and

DDX3X (Calviello et al., 2021; Guenther et al., 2018; Sen et al., 2015; Soto-Rifo et al., 2012) are

involved in translational initiation by binding to highly structured transcript leader sequences and

subsequently disentangling them. A recently published study showed that DDX3X binds to 5’

UTRs and the small  ribosomal  subunit  to  initiate  translation  of  the  mRNA with  a  long and

structured leader  sequence  (Calviello  et  al.,  2021).  We set  out  to systematically  identify  all

RBPs involved in translating transcripts with complex 5’ UTR sequence by calculating the 5’

UTR minimum free energy (MFE) of TE and mRNA targets of all dual-function RBPs. For 17/21

dual-function  RBPs,  we  observed  significant  differences  between  positively  and  negatively

correlating targets in structural composition (Figure 32A) and weak significance for correlating

mRNA targets of the same RBPs.
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Three  TE-RBPs  showed  by  far  the  strongest  difference  between  positively  and  negatively

correlating  targets:  as expected DDX3X (padj =  9.47 × 10-47)  and core spliceosome splicing

factors PRPF8 (padj = 2.70 × 10-29) and EFTUD2 (padj = 1.69 × 10-30) (Figure 32A and 32B).

The 156 targets shared between the three RBPs showed identical correlation directions and

encoded for proteins involved in mRNA stabilization (GO:0048255; padj= 3.09 × 10-4)  (Figure

32C).  We  identified  21  dual-function  RBPs  involved  in  target  mRNA  abundance  and

translational  efficiency  regulation  through  distinct  sets  of  target  genes,  resulting  in  different

biological consequences but the involvement of similar binding motifs.
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Figure 32: Differential affinity of dual-function RBPs for 5’ UTR structures.

(A) Dot  plot  displaying the significance of  differences in  length normalized minimum free energy

(MFE) of 5’ UTR sequence between positively and negatively correlating target genes for each dual-

function RBP.  Significance was calculated separately  for  mRNA (green) and TE (brown)  targets.

Adjusted p-values are shown on -log10 scale, and only 5’ UTR sequences longer than 20 nucleotides

were evaluated.  (B) Box and violin plots for the three most significant dual-function RBPs (DDX3X,

EFTUD2, PRPF8) (Figure 23A) displaying the difference between positively and negatively correlating

TE targets.  (C) Three way Venn Diagram showing the overlap between the selected dual-function

RBPs in absolute numbers (left). Heatmap representing TE correlations of 156 shared target genes

for the selected dual-function RBPs (right).



Discussion

In  this  thesis,  I  presented the first  genome-wide  investigation  of  translational  information in

human cardiac tissue, provided by ribosome profiling. The work focused on the biogenesis of

novel  microproteins  from  long  noncoding  RNAs  resulting  in  the  discovery  of  339  proteins

encoded by 169 lncRNAs of which a large fraction can be replicated in kidney and liver tissues.

Surprisingly, dozens of microproteins suggest a mitochondria related function.

Furthermore, I observed extensive translational regulation on cardiac expressed genes involved

in biological process that represent hallmarks of cardiac disease. The data set enables a large

resource to study translation and translational  regulation  such as the multifunctional  role of

RNA-binding proteins, presented in this work.

In the following sections, I will discuss these findings and their implication on our understanding

of cardiac biology and translational activity in human heart tissue.

Ribosome profiling: a tool for detection of novel proteins

To identify novel translation events, we, for the first time, applied ribosome profiling (Ribo-seq)

in  human cardiac  tissue.  The collected data  allowed an unbiased  search for  novel  cardiac

expressed proteins without  strong nucleotide  conservation or  minimum ORF length,  as has

been  applied  previously  to  annotate  lncRNAs  across  species  (Cabili  et  al.,  2011) or  their

function in mouse models  (Guttman et al.,  2009).  A potential reason for using conservation

approaches to identify novel proteins was simply the absence of a technique reliably providing

evidence in vivo which is now aided by Ribo-seq and the belief that protein-coding genes must

show sequence conservation across species as an indicator of functionality.

The amount of identified translation events largely depends on the gene expression threshold

defined within mRNA-seq. In this study, an expressed gene is required to show an average

FPKM expression ≥ 1 across all samples of the respective cohort. It has been shown that active

translation  affects  mRNA stability  (Herzog et  al.,  2017;  Wu et  al.,  2019) showing that  high

expression is not  necessarily required for  sufficient  protein production.  Consequently,  stable

mRNAs with low expression but high ribosome occupancy and high translational efficiency can

produce large number of proteins. This likely happens in rare cardiac cell types that can’t be

captured with bulk ribosome profiling but rather on a single cell level (Litviňuková et al., 2020).

Even if ribosome profiling would be applied to single cells, low footprint coverage on individual

genes  would  not  allow  detection  of  active  translation  determined  by  3nt  periodicity.  High

coverage in ribosome profiling data across mRNAs is essential to assign 3nt periodicity.  
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Another circumstance impacting detection of translation events among lncRNAs and protein-

coding genes are the used thresholds. Due to the nature of the Ribo-seq protocol, we get a

snapshot of active translation within the tissue or cell line and depending on the translational

efficiency, we might see a sparse 3nt signal for the ORF of interest. The thresholds applied on

the  spare  translation  signals  can  have  multiple  distinct  outcomes,  such  as  alternative

downstream start codon or poorly covered translation termination sites, resulting in insignificant

periodicity.  Our  conservative  thresholds  aimed to  detect  robustly  translated  transcripts  and

potentially skipped those that slightly miss the requirements due, e.g. too low coverage in a

subset of samples.

Nucleotide  conservation  across  species  or  identification  of  homolog  protein  sequences  can

provide evidence of preserved functionality. We investigated nucleotide conservation across 49

mammals using a PhyloCSF based pipeline and genomic positional and translation initiation

conservation  between  human,  mouse,  and  rat  species  for  all  detected  lncRNA  ORFs.

Compared to canonical mRNAs, the majority of the translated lncRNAs reported in this work

show limited nucleotide conservation across species. We instead identified conservation limited

to primates or  no conservation  at  all,  suggesting  production of  evolutionary  young proteins

(Ruiz-Orera & Albà, 2019) evolved particularly within the primates or are human-specific. Of

course, translation of short open reading frames does not have to result in functional proteins;

the translation itself might fulfil a regulatory role such as has been observed with uORFs that

frequently repress translation of the downstream main CDS (L. Jia et al., 2020; Johnstone et al.,

2016).  Upon  perturbation  of  uORF-mediated  translation,  a  wide  range  of  human diseases,

covering metabolic or neurologic disorders (Barbosa et al., 2013) have been observed. The act

of translation as a regulatory process likely explains the poor sequence conservation of uORFs

across  species.  Identified  translated  lncRNAs  presented  here  largely  lack  sequence

conservation but are detectable at subcellular level and theier presence can be observed both

in vitro and in vivo, suggesting a stable translational product with potential biological function in

the human heart.

Apart from Ribo-seq translation evidence,  we were able to validate peptide production for a

significant  fraction  of  tested  micropeptides  in  vitro using  in  vitro  transcription  (IVT)  and

translation assays. Along with ATG KOs, we got another layer of evidence that lncRNAs form

stable proteins whose synthesis can be disturbed by targeting the translation initiation site. To

show that these microproteins are stable and detectable in vivo, we set out to search them in

deep mass spectrometry datasets. Identifying short proteins is problematic in the cardiac tissue

due  to  the  high  dynamic  range  of  sarcomere  proteins  in  the  sample.  Also  short  digested

peptides (< 5 amino acids) are not detectable, on the other hand long peptides are hard to

detect  as  well  (Bazzini,  Johnstone,  Christiano,  Mackowiak,  et  al.,  2014),  although  longer
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peptides can be additionally digested to overcome this problem. In targeted proteomics high

abundant proteins make it nearly impossible to detect lowly expressed ones (Bekker-Jensen et

al., 2017), or the high false-discovery rate makes it almost impossible to confirm them (Ezkurdia

et al., 2014; Savitski et al., 2015; The et al., 2016). Using the deepest heart shotgun MS dataset

to date and a newly generated deep proteome of human iPSC-CM, we were able to find unique

evidence for 40.20% of all proteins identified by RiboTaper (Figure 33), highlighting the problem

of protein detection  in vivo  using e.g. mass spectrometry based methods. Other studies also

reported low detection rates using mass spectrometry (MS) methods for potentially translated

lncRNAs. Bazzini and colleagues observed, in zebrafish,  MS evidence for  98/302 (~32%) for

already annotated short ORFs  (Bazzini, Johnstone, Christiano, MacKowiak, et al., 2014) and

even  lower  rates  were  reported  by  Mackowiak  and  colleagues  (Mackowiak  et  al.,  2015),

although  this  study  focused  on  conserved  sORFs  across  different  species  making  direct

comparison difficult.

Among the tested 339 microprotein sequences,  we were able to validate 41%; this  fraction

increased to 55% by using high-throughput  selected reaction monitoring (SRM) assay for  a

randomly selected set of candidates in five independent heart samples. Even though the SRM

technique allows to train the mass spectrometer for the spectra of individual micropeptides that

were  synthetically  generated  and  search  only  for  those  within  the  sample  ignoring  other

proteins, we could identify a bit more than half of the tested micropeptides using this technique.
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Figure 33: Actively translated genes.

Venn diagram of  detected genes in the

cardiac  transcriptome,  translatome  and

proteome.



Robust  mass  spectrometry  peptide  detection  is  complicated  and  is  constantly  improved

(Aebersold  &  Mann,  2016),  meaning  that  micropeptides  produced  by  translated  lncRNAs

underlie a high false-negative rate due to their short length and low abundance compared to

canonical proteins. As we have shown, a combination of multiple validation techniques such as

ribosome profiling, IVT assays, high-throughput MS and SRM is needed to get peptide evidence

for the majority of  tested candidates.  Particularly  mass spectrometry approaches,  which are

currently the gold standard to show protein abundance in vivo, suffers from high false-positive

rates or cannot capture the complete proteome of the sample of interest. Thus a combination of

multiple  methods  seems to  be  helpful  to  capture  even  low  abundant  proteins.  Finally,  the

development of new high sensitivity mass spectrometry protocols will help us in detection of all

cell or tissue residing proteins.

Another  source of  novel  microproteins presented in  this  work is  the class of  circular  RNAs

(circRNAs)  that  are  known  for  a  long  time  but  drew  attention  over  the  last  few  years

(Kristensen et al., 2019). Their biogenesis through non-canonical backsplice junctions formation

and  circular  structure  lacking  polyA  site  is  detectable  in,  e.g.  totRNA  (rRNA-)  datasets.

However, their detection rate relies on reads mapping to the backsplice junctions (Zeng et al.,

2017). We used RNase R to show that circRNAs have increased resistance to exonuclease

treatment (Jeck et al., 2013) and thus form stable transcripts.

Selected efforts have shown that circRNAs can serve as templates for translation (C. Y. Chen &

Sarnow, 1995; Ho-Xuan et al., 2020; Legnini et al., 2017; Pamudurti et al., 2017) and even form

an infinite ORF with efficient translation in a rolling cycle  (Abe et al., 2015). Using ribosomal

footprints that map to the backsplice junctions, we identified a set of 40 potentially translated

circRNAs with at least three unique and, in total, five reads mapping to the junction. For 6 out of

40 potentially translated circRNAs, we observed peptide evidence in the same heart shotgun

MS dataset used for the micropeptide detection. Additional wet-lab work would be required to

identify the precise exons composition that forms a mature circRNA  (Memczak et al., 2013),

which can be used to predict the complete ORF in case of ribosome occupancy. However, a

high-throughput method to access circRNA structure is still missing. Thus, our MS search of

potentially translated circRNAs is restricted to a relatively short area of the backsplice junction

resulting in one or two short tryptic peptides. As discussed before, short tryptic peptides or its

amino acid composition might result  in high false negative detection rates. Even though we

observed ribosome occupancy, it was much lower than for canonical ORFs and suggests low

protein abundance, close to noise, during in vivo validation. Finally, alternative FDR correction

methods are needed to ensure signal conclusions (Hansen, 2021) and avoid current mass-spec

estimates which are under debate (Danilova et al., 2019; Gupta et al., 2011).
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Alternative library protocols aiming to capture unique circRNA features are required to obtain

circRNA transcripts free from linear counterparts of the same host gene. Such information would

allow assembly of a circRNA specific transcriptome and ease downstream analysis,  such as

identification of translation events.

Functional characterization of novel microproteins

A remarkable fraction of translated lncRNAs have well-characterized noncoding functions.  A

striking example is the well-characterized lncRNA  UPPERHAND  (HAND2-AS1). The lncRNA

shows  positional  conservation  and  hosts  several  short  open  reading  frames  with  Ribo-seq

evidence. The transcriptional process of Upperhand in mouse has been shown to regulated its

sense protein-coding gene HAND2 in cis, while the mature transcript with cytosolic localization

did not show any biological role (K. M. Anderson et al., 2016). However, others have associated

its expression with cancer  (Gu et  al.,  2021).  These examples show that  lncRNAs have the

potential to act as independent non-coding molecules or encode for microproteins, though its

proportion among all lncRNAs differs across studies (Guttman et al., 2013; Ingolia et al., 2014).

Compared to our study, the difference may be explained by modifications in the library protocol,

the definition of lncRNA or treatment with harringtonine as has been done frequently in previous

studies  (Guttman et  al.,  2013;  Ingolia  et  al.,  2011,  2014;  Stern-Ginossar  et  al.,  2012).  The

hypothesis is supported by several canonical protein-coding genes that produce transcripts with

noncoding functions. A prominent example is the TP53 protein, a known tumor suppressor that

shows  interrelated  regulatory  roles  of  both  the  protein  and  noncoding  RNA  (Candeias,

2011) and several other examples (Ivanyi-Nagy et al., 2018; Jenny et al., 2006). Interestingly,

the additional noncoding functions of mRNAs have been frequently discovered among 3’ UTRs,

mostly involved in cancer repression (Fan et al., 1996; Manjeshwar et al., 2003; Rastinejad et

al.,  1993).  Combining  the presented results  and public  investigation,  we can conclude  that

traditional categorization in coding and noncoding genes may come up short and may require

classification based on different methods.

Additionally, we predicted lncRNA function by looking at their co-regulated protein-coding genes

and their known biological function. We discovered groups of lncRNAs with shared functions

such as catabolic processes, nuclear processes, including transcription or DNA binding and/or

fatty acid oxidation. The largest group comprising 22 lncRNAs showed coregulation with genes

essential for mitochondrial function.

Considering  the literature  to  date,  the  relatively  small  mitochondria  seem to  be an  optimal

cellular  organelle  to  use small  proteins  to fulfil  its  role as  an energy factory.  Among these
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microproteins, we find MOXI, a microprotein involved fatty acid ß-oxidation (Makarewich et al.,

2018), MIEF1 involved in mitochondrial translation (Rathore et al., 2018), and mitoregulin, which

is  involved  in  protein  complex  assembly,  membrane  potential,  respiration  rates,  and

CA2+retention  (Stein  et  al.,  2018).  The  microprotein  BRAWNIN  has  been  suggested  as

essential  for  mitochondrial  complex  III  assembly  (S.  Zhang  et  al.,  2020),  and  Mitolamban

regulates  respiratory  complex  III  function  (Makarewich,  2020).  Many detected microproteins

across  species  seem  to  be  membrane-bound  proteins  with  specific  biological  functions

(Makarewich, 2020).

Translational regulation of the failing human heart

The large human cohort  consists of  80 left  ventricular  samples that allow us to disentangle

transcriptional and translational regulation of the end-stage and healthy hearts for the first time.

To overcome differences between RNA-seq and Ribo-seq, the read length of both sets was

matched and jointly  normalized  to achieve equal  library  sizes.  The combined normalization

ensures comparison between RNA-seq and Ribo-seq fold changes in downstream analysis.

Comparing  both  diseased  and  unaffected  samples,  I  was  able  to  identify  4,344  genes

differentially  expressed at  both transcriptional  and/or  translational  levels.  By looking  only  at

transcriptional information, we would have missed genes with differential behaviour appearing

at the translational level, making this dataset suitable to study active translation without relying

on mass spectrometry data that suffers from a poor detection rate of lowly abundant proteins.

Coregulation analysis for all differentially expressed genes resulted in clusters of genes with

similar patterns of regulation. We used the fold changes of both quantitative traits (RNA-seq and

Ribo-seq) to calculate a delta fold change between those obtaining a measure for the overall

direction of regulation. We see clusters with various directions of regulation. For example, five

mitochondrial clusters are downregulated at transcription, and for some of them, this effect is

enhanced  at  the  translational  level.  This  observation  supports  our  knowledge  about

mitochondrial  dysfunction in DCM. During the onset of DCM, the number of mitochondria in

cardiomyocytes increases to compensate for higher energy demand (Rosca & Hoppel, 2010).

During  the  progression  of  cardiac  stress  in  DCM  patients,  autophagic  flux,  responsible  for

removing dysfunctional mitochondria, causes accumulation of damaged mitochondria leading to

cardiomyocyte apoptosis (Campos et al., 2016), an indicator of DCM.

Many  of  the  sarcomere  proteins  show  an  upregulated  transcriptional  basis  that  is  even

enhanced at translation. Furthermore, we identified clusters enriched in genes encoding ECM

proteins with weak up or downregulation of genes on the transcriptional but strong upregulation
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on  the  translational  level.  Upon  cardiomyocyte  death,  the  heart  initiates  overproduction  of

collagen and other ECM proteins to maintain cardiac structure and function. This behaviour is

recognized  as  a  hallmark  in  failing  DCM-hearts  (Schultheiss  et  al.,  2019;  Travers  et  al.,

2016) and  serves  as  an  explanation  of  the  observed  translational  upregulation  of  genes

encoding ECM proteins. The absence of transcriptional upregulation for these clusters suggests

that post-transcriptional regulation is likely responsible for higher translational efficiency. Our

understanding  of  this  regulation  is  sparse  and  warrants  further  investigation  using  similar

approaches in model organisms such as the rat (Schafer, Adami, et al., 2015) but with sufficient

power or large human cohorts as presented in this work.

This work presents a dataset that allows investigation of cardiac biology at the translational

level, identifying sets of genes that cooperatively or competitively shape the cardiac landscape.

It also allows studying complex mechanisms that are regulated at the translational level, with

sufficient power. One example is the mechanistic target of the rapamycin (mTOR) pathway, a

master  regulator  of  multiple  cellular  processes,  including  translational  regulation.  Our

understanding of mTOR driven translational program is incomplete, and multiple efforts have

been looking at uniform cell lines (Hsieh et al., 2012; J.-J. Jia et al., 2021; Thoreen et al., 2012).

In the human heart, the mTOR cluster shows both transcriptional and translational upregulation.

Among  them,  we  find  significantly  upregulated  translational  efficiency  levels  of  5'  terminal

oligopyrimidine  (TOP)  motif-containing  mTOR  target  genes  (padj =  2.52  ×  10-7)  with  a

downregulated  transcriptional  basis.  This  cohort  and  particularly  the  nucleotide  resolution

provided by ribosome profiling, provides a tool to study mTOR regulation at an unprecedented

level.

RNA-binding protein abundance is predictive of target mRNA levels and 
translational efficiencies

RNA-binding proteins (RBPs) are known to be essential regulators for a wide range of cellular

processes such as RNA transcription, splicing, translation, and many more (Gerstberger et al.,

2014).  However,  increasing  evidence  suggests  that  RBPs  can  have  multiple  functions  that

regulate  gene  expression,  depending  on  their  localization  within  different  subcellular

compartments  (Backlund et al.,  2020). Our  in silico pipeline uses genome-wide coregulation

analysis to identify RBP-driven mRNA abundance and translational efficiency (TE) regulation of

target genes in the human heart. Out of the 143 expressed RBPs, we assigned 74 RBPs to

these quantitative traits. We find RBPs with already known function in mRNA abundance of TE

level regulation and assign yet uncharacterized function for other RBPs. The mRNA-RBP RBM5
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is a known nuclear factor involved in splicing tumor suppression targets including p53 (Jamsai

et  al.,  2017).  The  TE-RBP  EIFG2  is  a  known  protein  of  the  translation  initiation  complex

inducing  cap-independent,  IRES-driven  translation  (Liberman et  al.,  2009).  Recently,  it  has

been discovered that EIFG2 can re-initiate the main CDS following uORF translation, though the

exact mechanism is unknown (Weber et al., 2021).

The 37 predicted TE-RBPs can be clustered correlation-wise in groups showing either positive

or negative direction of regulation to their target mRNAs. It is important to mention that many of

them form sets of RBPs sharing at least three mRNA targets. We find examples like the poorly

characterized UCHL5, a protease that show opposite effects than the splicing factor U2AF2 on

selected targets. This behaviour is reproducible in an independent  cohort of primary cardiac

fibroblasts suggesting a general complex translational control that likely holds for other RBP

groups with competing or cooperative effects.

Future  studies  need  to  answer  how  RBPs  are  internally  regulated  and  identify  master

regulator(s), which will  be very difficult because of the wide range of RBP classes known to

date. With the development of new technologies, a fine-tuned functional roles of RBPs might be

elucidated, resulting in a more complex interaction network with multiple regulatory RBP hubs.

Our approach used CLIP-seq information to build a directional  RBP-RBP network based on

correlation, and a weighted score derived using permutation analysis. We identify  five RBPs

(HNRNPM,  EFTUD2,  U2AF2,  SF3A3,  RPS3)  as  central  regulators  of  cardiac  translation.

However, this approach does not consider the amount of non-RBP target mRNAs or the effect

size of the individual RBPs. Additional information might help to form a robust network with

precise master regulator(s) for the investigated set.

Among the 37 predicted TE-RBPs, we see many splicing factors, which can be explained by the

relatively high number of splicing factors within the initial set. Even though RBPs like U2AF2

show exclusive nuclear localization, our pipeline predicted association with TE levels regulation

but  also  some  well-characterized  splicing  factors  involved  in  mRNA  translation  such  as

HNRNPM  (T.-M. Chen et al.,  2019), SRSF1  (Maslon et al.,  2014), or SRSF3  (J. Kim et al.,

2014). Additional experiments are needed to validate their impact on translation in the human

heart, though applying CLIP-seq experiments on post-mortem cardiac tissue is very complex.

Furthermore, all RBPs included in this work are ubiquitously expressed across a wide range of

tissues and thus likely  act as general transcriptional  and translational  regulators also in the

human heart.  As discussed previously,  CLIP signal  is preserved among similarly expressed

genes of the same RBP independent of the cell line, and peak differences instead reflect cell

type-specific expression than binding affinity  (Van Nostrand et al., 2020). Taken together, the

predicted transcriptional and translational role likely persist across a wide range of tissues and

cell lines with differences specific to the tissue/cell line, as discussed next.
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RBM20 mediated isoform production switch defines translational efficiency 
of target genes

One of  the  RBPs  with  novel  function  is  the  muscle-specific  and  disease-relevant  TE-RBP

RBM20. We have shown its abundance positively correlates with the TE levels but not mRNA

abundance of mostly sarcomere genes. Even though the act of splicing occurs in the nucleus,

we see an isoform-dependent correlation with translational efficiency, even though translation is

a cytosolic process. The most prominent sarcomeric target is TTN, which consists of four bands,

of which the I-Band is spliced out to switch between N2B and N2BA isoforms (Guo et al., 2012).

While N2BA is more elastic due to the inclusion of the I-Band, N2B is shorter and thus stiffer

(Freiburg et al., 2000). We observed a negative correlation of RBM20 abundance to the splicing

ratios of TTN I-Band specific exons but overall positive TTN TE, indicating that exon inclusion

contributes  negatively  to  the  translational  efficiency.  This  hypothesis  is  supported  by

significantly lower TE levels of N2BA specific exons that are not part of N2B transcript isoform.

We have observed this behaviour previously  (van Heesch et al., 2019) and can now connect

this mechanistically to RBM20 splicing control.

Besides TTN, many other target genes show similar RBM20 driven splicing effects on single or

relatively low exon numbers. How exon exclusion affects isoform production and translational

efficiency and whether isoform-specific characteristics such as secondary structure (Lim et al.,

2018; S. E. Wang et al., 2020) or codon usage determine the differences of TE rates as we

have observed for TTN remains elusive and requires additional studies.

The same strategy could be applied for other splicing factors associated with TE levels of target

RNAs. There is a gap in our systematic understanding of when and why splicing factors switch

isoform production leading to either inclusion or exclusion of  selected exons resulting in an

isoform  switch.  Particularly  in  the  heart,  whose  function  is  determined  by  cardiomyocytes,

validation  experiments  are  challenging  to  conduct  but  are  needed  to  elucidate  the  precise

molecular  interactions  driving  translational  regulation  by  nuclear  splicing  factors  such  as

RBM20.

Dual-function RBPs regulate mRNA abundance and TE

Along with  RBPs showing potential  novel  functions,  we identified  21 RBPs associated with

regulation of target mRNA abundance and TE, which we termed “dual-function” RBPs. Only little

is known about the multifunctionality of RBPs and how this regulation is activated. Some recent

efforts  have  investigated  the  molecular  mechanisms  behind  multiple  functionalities,  which
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includes the formation of heterogeneous RBP complexes (Copsey et al., 2017; Damianov et al.,

2016), switching from monomers to multimers (Y. Kim & Myong, 2016) and between subcellular

localizations (Burgess et al., 2011). As provided by van Nostrand and colleagues (Van Nostrand

et al., 2020), subcellular localization by immunofluorescence shows both nuclear and cytosolic

localization  for  most  of  RBPs,  suggesting  switching  of  the  cellular  compartments  to  fulfil  a

distinct  function.  A  prominent  example  is  the  splicing  factor  HNRNPM  which  our  network

analysis  identified  as  one  of  the  five  central  regulators  of  translation.  Within  the  nucleus

HNRNPM is associated with pre-mRNA splicing (S. E. Harvey et al., 2018). Upon viral infection,

it switches from the nucleus to the cytosol, where it inhibits RNA virus-triggered innate immunity

(Cao et al., 2019) or induces cap-independent IRES-mediated translation upon hypoxia (T.-M.

Chen et al., 2019). 

Surprisingly, we observed that dual-function RBPs target distinct sets of genes depending on

whether mRNA abundance or TE rate is regulated. The limited overlap between groups and

independent effect sizes within each RBP indicate distinct modes of regulation. To answer the

question of how this regulation is modulated, we investigated different target and RBP features.

We set out to identify the usage of different RBP binding motifs and the presence of binding

sites located in different transcript regions (i.e. UTRs, CDS, or introns). However, we did not

observe any striking differences between different groups of target genes. On the other side, we

observed RBPs affinity to protein-coding genes sequence and UTR length, adding up to the

independent effects of gene expression. A recent study has investigated the binding kinetics of

RBP DAZL and its  effect  on mRNA abundance  and translation.  They were able  to identify

several  3’  UTR  features  (e.g.  UTR  length,  presence  of  binding  clusters  and  distance  to

polyadenylation site) correlating with the trait regulation of different groups of target genes.

Among the dual-function RBPs, we identified examples with already known multi-functionality.

One of them is G3BP1, a known multi-functional protein that can compartmentalize specific sets

of mRNA to arrest translation as a response to arsenite stress, hypoxia and heat shock (Matsuki

et al., 2013), UV exposure (Ying & Khaperskyy, 2021) and axonal mRNA translation and nerve

regeneration  (Sahoo et al., 2018). Besides stress granule formation, G3BP1 binds to specific

stem-loop  structures  to  trigger  mRNA  degradation  (Fischer  et  al.,  2020),  promoting  the

formation of  large cGAS complexes  (Liu et  al.,  2019) or binds to viral  dsRNA and RIG-I to

enhance IFN-β response (S. S. Y. Kim et al., 2019). Another example is DEAD-Box Helicase 3

X-Linked  (DDX3X)  which  has  been  shown to  play  important  roles  in  transcription,  splicing,

transport, translation initiation, and cell  cycle regulation  (Rosner & Rinkevich, 2007) but also

information of stress granule and impair mRNA translation (Samir et al., 2019; Valentin-Vega et

al.,  2016). At the same time, we provide dual-function evidence for the  Ubiquitin C-Terminal

Hydrolase L5 (UCHL5). Target genes correlating to UCHL5 abundance show mRNA abundance
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trait involvement in chromatin organization, while targets with changes in TE rates encode for

proteins  involved  in  splicing.  For  many  other  dual-function  RBPs,  we  observed  different

biological functions of trait-specific target genes such as G3BP1 but somewhat similar GO terms

for PUM1, and some trait-specific genes showed no enrichment.

Since  none  of  the  investigated  attributes  revealed  trait-specific  regulation  uniformly,  a

combination of several RBP and target gene features likely achieve modulation of RBP dual-

functionality.  Thus,  combining  multiple  approaches  in  vitro or  in  vivo might  help  dissecting

modulation of RBP function. One example was proposed by Liao and colleagues  (Liao et al.,

2016) by  simultaneously  combining  mRNA interactome capture  (Castello  et  al.,  2012) and

RBDmap  (Castello et al., 2016) to identify known and novel RBPs in mouse cardiomyocytes.

Furthermore, RBDmap allows the identification of RNA contact regions within RBPs. Future

studies  need  to  investigate  whether  trait-specific  targets  show similarities  in  the  RBP-RNA

interaction regions or if the inclusion of other techniques shed light on the complex interaction of

RBP and its target mRNAs.

Conclusion and future outlook

With  this  work,  I  presented  transcriptional  and  translational  regulation  in  the  human heart,

resulting in known processes and unexpected findings. Integration of ribosome profiling as a

technique  to  study  the  intermediate  level  of  gene  expression  between  transcriptome  and

proteome  allows  an  unbiased  search  for  novel  translation  events  that  would  have  gone

undetected with traditional pipelines. Furthermore, ribosome profiling enables the investigation

of  global  translational  differences in  gene expression that  are  not  visible  at  transcription  or

association of RBP protein abundance with translational efficiency.

Using ribosome profiling, I predicted the translation of hundreds of novel microproteins in the

human  heart.  Many  of  them  are  located  in  the  mitochondria,  suggesting  mitochondrial

metabolism,  heart  homeostasis,  and cardiovascular  diseases.  A significant  fraction of  these

translation  events  were  also  found  in  the  kidney  and  liver  suggesting  a  universal  process

present across all tissues and their cells. Individual studies are needed to capture the whole

translatome,  including  tissue-specific  proteins.  Transcriptional  and  translational  profiling  on

single cells will expand our understanding to unexpected detail, providing information on cell-

type specificity  for  all  (short  and long)  proteins  and their  role in  disease.  A combination  of

different approaches will likely emerge as a gold standard to confirm in vivo evidence. False-

positive  rates  and  individual  tissue  complexities  make  it,  to  date,  impossible  to  confirm

microprotein  presence  with  a  single  technique.  Though  the  prediction  of  translation  and
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confirmation of its abundance may only indicate potential function, future studies need to either

apply methods such as CRISPR-CAS9 to screen for potential function (J. Chen et al., 2020) or

do it case by case.

Apart from systematic or individual investigations of protein function, micropeptides will  likely

receive  a  central  role  in  medicine.  Their  short  protein  sequences  allows  binding  to  large

complexes  triggering  enhanced  function  or  inhibition,  making  these  interactions  or  the

micropeptides druggable targets in biomedical application. In combination with advanced single

cell  techniques these proteins might  be used for identification of affected cell  lines allowing

precise diagnosis of affected heart regions and the resulting cardiac disease.

Integration of transcriptional and translational information in diseased and unaffected human

hearts  revealed  gene  clusters  with  determined  trait-specific  biological  roles.  These  clusters

allowed us to gain a deeper insight into processes regulated at transcription, translation, or both

levels that transcription alone would miss. Though transcription explains a significant fraction of

protein  variation,  translation  that  supplements  prediction  of  protein  abundance,  has  been

previously suggested (Schafer, Adami, et al., 2015; van Heesch et al., 2019).

Finally,  RNA-binding  protein  abundance  can  be  used  as  a  predictive  measure  for  mRNA

abundance and TE rates. Quantitative co-regulation between protein abundance (as measured

by  Ribo-seq)  and  targets  quantitative  traits  allows  prediction  of  protein  multifunctionality,

expanding our understanding of the complex intracellular molecular processes. Even though we

extrapolated CLIP-seq peaks from mostly cell lines to cardiac transcriptional and translational

information, ubiquitous RBP expression suggest a general function across all types of human

tissues. Of course additional CLIP-seq experiments in the heart would fine-tune the results at

the same time we expect no large differences.
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