6,253 research outputs found
Carbon emission savings and short-term health care impacts from telemedicine: An evaluation in epilepsy
Objective: Health systems make a sizeable contribution to national emissions of greenhouse gases that contribute to global climate change. The UK National Health Service is committed to being a net zero emitter by 2040, and a potential contribution to this target could come from reductions in patient travel. Achieving this will require actions at many levels. We sought to determine potential savings and risks over the short term from telemedicine through virtual clinics. Methods: During the severe acute respiratory syndrome coronavirus 2 (SARS-2-CoV) pandemic, scheduled face-to-face epilepsy clinics at a specialist site were replaced by remote teleclinics. We used a standard methodology applying conversion factors to calculate emissions based on the total saved travel distance. A further conversion factor was used to derive emissions associated with electricity consumption to deliver remote clinics from which net savings could be calculated. Patients’ records and clinicians were interrogated to identify any adverse clinical outcomes. Results: We found that enforced telemedicine delivery for over 1200 patients resulted in the saving of ~224 000 km of travel with likely avoided emissions in the range of 35 000–40 000 kg carbon dioxide equivalent (CO2e) over a six and half month period. Emissions arising directly from remote delivery were calculated to be <200 kg CO2e (~0.5% of those for travel), representing a significant net reduction of greenhouse gas emissions. Only one direct adverse outcome was identified, with some additional benefits identified anecdotally. Significance: The use of telemedicine can make a contribution toward reduced emissions in the health care sector and, in the delivery of specialized epilepsy services, had minimal adverse clinical outcomes over the short term. However, these outcomes will likely vary with clinic locations, medical specialties and conditions
The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM
Recent studies have indicated that ocean circulation damps the atmospheric energy transport response to hemispherically differential energy perturbations, thereby muting the shifts of the Inter-Tropical Convergence Zone (ITCZ). Here, we focus on the potential role of Ekman heat transport in modulating this atmospheric response. An idealized representation of Ekman-driven heat transport (FE) is included in an aquaplanet slab ocean coupled to a gray radiation atmospheric model. We first alter the strength of FE in the control climate by tuning the gross stability of the Ekman layer SE. For a wide range of FE, the total poleward transport of energy remains nearly unchanged, but the ocean transports an increasing share for larger SE. The control climate is then perturbed by adding surface cooling in the Southern Hemisphere and warming in the Northern Hemisphere. The Ekman coupling damps the atmospheric energy transport response, as in previous coupled model experiments with full ocean dynamics. The ratio of the changes in Ekman to atmospheric energy transport is determined by the ratio of the gross stability in the Ekman layer to the atmosphere in the control climate, and is insensitive to the amplitude and location of forcing. We find that an unrealistically large SE is needed to reproduce the ratio of the changes in cross-equatorial oceanic to atmospheric energy transport in fully coupled models. The limited damping effect of Ekman transport highlights the need to examine the roles of deep circulation and subtropical gyres, as well as ocean heat uptake processes
Albumin concentrations are primarily determined by the body cell mass and the systemic inflammatory response in cancer patients with weight loss
The association between hypoalbuminemia and poor prognosis in patients with cancer is well recognized. However, the factors that contribute to the fall in albumin concentrations are not well understood. In the present study, we examined the relationship between circulating albumin concentrations, weight loss, the body cell mass (measured using total body potassium), and the presence of an inflammatory response (measured using C- reactive protein) in male patients (n=40) with advanced lung or gastrointestinal cancer. Albumin concentrations were significantly correlated with the percent ideal body weight (r=0.390, p lt 0.05), extent of reported weight loss (r=-0.492, p lt 0.01), percent predicted total body potassium (adjusted for age, height, and weight, r=0.686, p lt 0.001), and logo C-reactive protein concentrations (r=-0.545, p lt 0.001). On multiple regression analysis, the percent predicted total body potassium and log(10) C-reactive protein concentrations accounted for 63% of the variation in albumin concentrations (r(2) = 0.626, p lt 0.001). The interrelationship between albumin, body cell mass, and the inflammatory response is consistent with the concept that the presence of an ongoing inflammatory response contributes to the progressive loss of these vital protein components of the body and the subsequent death of patients with advanced cancer
Resident Perception of Academic Skills Training and Impact on Academic Career Choice
Objectives: 1) To evaluate residents' perceptions of the quality of training in basic academic skills and the availability and quality of research resources during residency; 2) to evaluate the association between these attitudes and choice of an academic career; and 3) to assess residents' attitudes toward the importance of postgraduate fellowship training for success in an academic career. Methods: A 15-item survey was administered to all U.S. emergency medicine (EM) residents in conjunction with the February 1997 American Board of Emergency Medicine (ABEM) In-service Examination. The survey assessed resident interest in a career in academic EM, and resident perception of the general quality of training in academic (research and teaching) skills. Residents were also asked to rate the quality of their training in the following specific academic skills: medical and grant writing, bedside teaching, lecturing, the use of computers, study design, statistics, and the use of audiovisual aids. Resident perceptions of the availability of the following resources were also assessed: teaching and research role models, data collection and analysis support, laboratory facilities, financial support of research, research fundamentals lectures, and computers. Results: The response rate was 93%. Forty-four percent of the respondents were interested in academic EM, 36.6% were undecided, and 19.6% were not interested in an academic career. On a scale of 1 (unprepared) to 5 (well prepared), the residents rated their overall preparedness for an academic career fairly high (3.97 [0.86]). In contrast, they perceived the quality of their training in the specific academic skill areas assessed and research resource availability to be only fair. Despite resident perception of relatively inadequate training in basic academic skills, only 24% of the respondents indicated that they believed fellowship training was important for success in an academic career. Logistic regression analyses demonstrated that participation in a research project in medical school, the length of the training program (4- vs 3-year), being a first-year resident, and a better perception of one's overall academic skill preparation were factors independently associated with having a greater interest in an academic career. Conclusions: A relatively high percentage of residents initially express an interest in an academic career, but this interest wanes as residency progresses. A minority of residents believe that their training provides them with the specific skills needed to succeed in academics, or with adequate exposure to research resources or mentors. Emergency medicine may be able to increase the number of qualified academic faculty by recruiting medical students with prior research experience, and providing residents with better research training and role models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72196/1/j.1553-2712.2000.tb00499.x.pd
Synaptic Cleft Segmentation in Non-Isotropic Volume Electron Microscopy of the Complete Drosophila Brain
Neural circuit reconstruction at single synapse resolution is increasingly
recognized as crucially important to decipher the function of biological
nervous systems. Volume electron microscopy in serial transmission or scanning
mode has been demonstrated to provide the necessary resolution to segment or
trace all neurites and to annotate all synaptic connections.
Automatic annotation of synaptic connections has been done successfully in
near isotropic electron microscopy of vertebrate model organisms. Results on
non-isotropic data in insect models, however, are not yet on par with human
annotation.
We designed a new 3D-U-Net architecture to optimally represent isotropic
fields of view in non-isotropic data. We used regression on a signed distance
transform of manually annotated synaptic clefts of the CREMI challenge dataset
to train this model and observed significant improvement over the state of the
art.
We developed open source software for optimized parallel prediction on very
large volumetric datasets and applied our model to predict synaptic clefts in a
50 tera-voxels dataset of the complete Drosophila brain. Our model generalizes
well to areas far away from where training data was available
The neonicotinoid insecticide Imidacloprid repels pollinating flies and beetles at field-realistic concentrations
Neonicotinoids are widely used systemic insecticides which, when applied to flowering crops, are translocated to the nectar and pollen where they may impact upon pollinators. Given global concerns over pollinator declines, this potential impact has recently received much attention. Field exposure of pollinators to neonicotinoids depends on the concentrations present in flowering crops and the degree to which pollinators choose to feed upon them. Here we describe a simple experiment using paired yellow pan traps with or without insecticide to assess whether the commonly used neonicotinoid imidacloprid repels or attracts flying insects. Both Diptera and Coleoptera exhibited marked avoidance of traps containing imidacloprid at a field-realistic dose of 1 μg L-1, with Diptera avoiding concentrations as low as 0.01 μg L-1. This is to our knowledge the first evidence for any biological activity at such low concentrations, which are below the limits of laboratory detection using most commonly available techniques. Catch of spiders in pan traps was also slightly reduced by the highest concentrations of imidacloprid used (1 μg L-1), but catch was increased by lower concentrations. It remains to be seen if the repellent effect on insects occurs when neonicotinoids are present in real flowers, but if so then this could have implications for exposure of pollinators to neonicotinoids and for crop pollination. © 2013 Easton, Goulson
Antisense oligonucleotide therapy for spinocerebellar ataxia type 2
There are no disease-modifying treatments for adult human neurodegenerative diseases. Here we test RNA-targeted therapies1 in two mouse models of spinocerebellar ataxia type 2 (SCA2), an autosomal dominant polyglutamine disease2. Both models recreate the progressive adult-onset dysfunction and degeneration of a neuronal network that are seen in patients, including decreased firing frequency of cerebellar Purkinje cells and a decline in motor function3,4. We developed a potential therapy directed at the ATXN2 gene by screening 152 antisense oligonucleotides (ASOs). The most promising oligonucleotide, ASO7, downregulated ATXN2 mRNA and protein, which resulted in delayed onset of the SCA2 phenotype. After delivery by intracerebroventricular injection to ATXN2-Q127 mice, ASO7 localized to Purkinje cells, reduced cerebellar ATXN2 expression below 75% for more than 10 weeks without microglial activation, and reduced the levels of cerebellar ATXN2. Treatment of symptomatic mice with ASO7 improved motor function compared to saline-treated mice. ASO7 had a similar effect in the BAC-Q72 SCA2 mouse model, and in both mouse models it normalized protein levels of several SCA2-related proteins expressed in Purkinje cells, including Rgs8, Pcp2, Pcp4, Homer3, Cep76 and Fam107b. Notably, the firing frequency of Purkinje cells returned to normal even when treatment was initiated more than 12 weeks after the onset of the motor phenotype in BAC-Q72 mice. These findings support ASOs as a promising approach for treating some human neurodegenerative diseases
Playing your pain away: designing a virtual reality physical therapy for children with upper limb motor impairment
Children with upper limb motor impairment often undergo repetitive therapeutic physiotherapy sessions to minimize functional disabilities of the affected area. Even though therapeutic processes can improve functional outcomes and minimize persistent disabilities, patients often neglect to participate fully in physical therapies due to the associated procedural pain. Over recent decades, there has been a growing interest in designing non-pharmacological interventions which aim to minimize pain during physical therapies and improve functional outcomes. Via two interrelated studies, we explored the use of virtual reality (VR) as a tool to provide therapeutic physiotherapy for child patients in an out-patient hospital department. We found that VR is an effective solution for children with upper limb motor impairment undergoing painful therapeutic process within a hospital environment. VR can improve functional disabilities, alleviate perceived pain, reduce the perceived difficulty of rehabilitation exercises, increase exercise duration and produce positive emotions towards the therapy
Effect of maternal panic disorder on mother-child interaction and relation to child anxiety and child self-efficacy
To determine whether mothers with panic disorder with or without agoraphobia interacted differently with their children than normal control mothers, 86 mothers and their adolescents (aged between 13 and 23 years) were observed during a structured play situation. Maternal as well as adolescent anxiety status was assessed according to a structured diagnostic interview. Results showed that mothers with panic disorder/agoraphobia showed more verbal control, were more criticizing and less sensitive during mother-child interaction than mothers without current mental disorders. Moreover, more conflicts were observed between mother and child dyadic interactions when the mother suffered from panic disorder. The comparison of parenting behaviors among anxious and non-anxious children did not reveal any significant differences. These findings support an association between parental over-control and rejection and maternal but not child anxiety and suggest that particularly mother anxiety status is an important determinant of parenting behavior. Finally, an association was found between children’s perceived self-efficacy, parental control and child anxiety symptoms
- …