843 research outputs found

    Fruits, Frugivores, and the Evolution of Phytochemical Diversity

    Get PDF
    Plants produce an enormous diversity of secondary metabolites, but the evolutionary mechanisms that maintain this diversity are still unclear. The interaction diversity hypothesis suggests that complex chemical phenotypes are maintained because different metabolites benefit plants in different pairwise interactions with a diversity of other organisms. In this synthesis, we extend the interaction diversity hypothesis to consider that fruits, as potential hotspots of interactions with both antagonists and mutualists, are likely important incubators of phytochemical diversity. We provide a case study focused on the Neotropical shrub Piper reticulatum that demonstrates: 1) secondary metabolites in fruits have complex and cascading effects for shaping the outcome of both mutualistic and antagonistic fruit–frugivore interactions, and; 2) fruits can harbor substantially higher levels of phytochemical diversity than leaves, even though leaves have been the primary focus of plant chemical ecology research for decades. We then suggest a number of research priorities for integrating chemical ecology with fruit–frugivore interaction research and make specific, testable predictions for patterns that should emerge if fruit interaction diversity has helped shape phytochemical diversity. Testing these predictions in a range of systems will provide new insight into the mechanisms driving frugivory and seed dispersal and shape an improved, whole-plant perspective on plant chemical trait evolution

    Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels

    Get PDF
    Objective Impulse control disorders are commonly associated with dopaminergic therapy in Parkinson's disease (PD). PD patients with impulse control disorders demonstrate enhanced dopamine release to conditioned cues and a gambling task on [11C]raclopride positron emission tomography (PET) imaging and enhanced ventral striatal activity to reward on functional MRI. We compared PD patients with impulse control disorders and age-matched and gender-matched controls without impulse control disorders using [123I]FP-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT), to assess striatal dopamine transporter (DAT) density. Methods The [123I]FP-CIT binding data in the striatum were compared between 15 PD patients with and 15 without impulse control disorders using independent t tests. Results Those with impulse control disorders showed significantly lower DAT binding in the right striatum with a trend in the left (right: F(1,24)=5.93, p=0.02; left: F(1,24)=3.75, p=0.07) compared to controls. Conclusions Our findings suggest that greater dopaminergic striatal activity in PD patients with impulse control disorders may be partly related to decreased uptake and clearance of dopamine from the synaptic cleft. Whether these findings are related to state or trait effects is not known. These findings dovetail with reports of lower DAT levels secondary to the effects of methamphetamine and alcohol. Although any regulation of DAT by antiparkinsonian medication appears to be modest, PD patients with impulse control disorders may be differentially sensitive to regulatory mechanisms of DAT expression by dopaminergic medications

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure

    A wide-angle outflow with the simultaneous presence of a high-velocity jet in the high-mass Cepheus A HW2 system

    Full text link
    We present five epochs of VLBI water maser observations around the massive protostar Cepheus A HW2 with 0.4 mas (0.3 AU) resolution. The main goal of these observations was to follow the evolution of the remarkable water maser linear/arcuate structures found in earlier VLBI observations. Comparing the data of our new epochs of observation with those observed five years before, we find that at "large" scales of > 1" (700 AU) the main regions of maser emission persist, implying that both the surrounding medium and the exciting sources of the masers have been relatively stable during that time span. However, at smaller scales of < 0.1" (70 AU) we see large changes in the maser structures, particularly in the expanding arcuate structures R4 and R5. R4 traces a nearly elliptical patchy ring of ~ 70 mas size (50 AU) with expanding motions of ~ 5 mas/yr (15 km/s). This structure is probably driven by the wind of a still unidentified YSO located at the centre of the ring (~ 0.18" south of HW2). On the other hand, the R5 expanding bubble structure (driven by the wind of a previously identified YSO located ~ 0.6" south of HW2) is currently dissipating in the circumstellar medium and losing its previous degree of symmetry, indicating a very short-lived event. In addition, our results reveal, at scales of ~ 1" (700 AU), the simultaneous presence of a relatively slow (~ 10-70 km/s) wide-angle outflow (opening angle of ~ 102 deg, traced by the masers, and the fast (~ 500~km/s) highly collimated radio jet associated with HW2 (opening angle of ~ 18 deg, previously observed with the VLA. This simultaneous presence of a wide-angle outflow and a highly collimated jet associated with a massive protostar is similar to what is found in some low-mass YSOs. The implications of these results in the study of the formation of high-mass stars are discussed.Comment: 28 pages, 7 figures. Animations will be included as supporting material online (MNRAS web page

    The Bipolar X-Ray Jet of the Classical T Tauri Star DG Tau

    Get PDF
    This is the author accepted manuscript. The final version is available from the Astronomical Society of the Pacific via the link in this record16th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, 28 August-3 September 2010, Seattle, USAWe report on new X-ray observations of the classical T Tauri star DG Tau. DG Tau drives a collimated bi-polar jet known to be a source of X-ray emission perhaps driven by internal shocks. The rather modest extinction permits study of the jet system to distances very close to the star itself. Our initial results presented here show that the spatially resolved X-ray jet has been moving and fading during the past six years. In contrast, a stationary, very soft source much closer (≈ 0.15 − 0.2 ′′) to the star but apparently also related to the jet has brightened during the same period. We report accurate temperatures and absorption column densities toward this source, which is probably associated with the jet base or the jet collimation region.Swiss National Science Foundatio

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the β tensor, β_(zzz) and β_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, β_(zzz) dominates in all cases, whereas the Stark analyses indicate that β_(zyy) is dominant in the shorter chromophores, but β_(zzz) and β_(zyy) are similar for the extended species. In contrast, finite field calculations predict that β_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)
    • …
    corecore