2,163 research outputs found

    A systematic approach to atomicity decomposition in Event-B

    No full text
    Event-B is a state-based formal method that supports a refinement process in which an abstract model is elaborated towards an implementation in a step-wise manner. One weakness of Event-B is that control flow between events is typically modelled implicitly via variables and event guards. While this fits well with Event-B refinement, it can make models involving sequencing of events more difficult to specify and understand than if control flow was explicitly specified. New events may be introduced in Event-B refinement and these are often used to decompose the atomicity of an abstract event into a series of steps. A second weakness of Event-B is that there is no explicit link between such new events that represent a step in the decomposition of atomicity and the abstract event to which they contribute. To address these weaknesses, atomicity decomposition diagrams support the explicit modelling of control flow and refinement relationships for new events. In previous work,the atomicity decomposition approach has been evaluated manually in the development of two large case studies, a multi media protocol and a spacecraft sub-system. The evaluation results helped us to develop a systematic definition of the atomicity decomposition approach, and to develop a tool supporting the approach. In this paper we outline this systematic definition of the approach, the tool that supports it and evaluate the contribution that the tool makes

    CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells

    Get PDF
    CCR7-mediated migration of naive T cells into the secondary lymphoid organs is a prerequisite for their encounter with mature dendritic cells, the productive presentation of cognate antigen, and consequent T cell proliferation and effector differentiation. Therefore, CCR7 was suggested to play an important role in the initiation of adaptive immune responses. In this study, we show that primary immunity can also develop in the absence of CCR7. Moreover, CCR7-deficient knockout (KO) mice display augmented immune responses. Our data cumulatively suggest that enhanced immunity in CCR7 KO mice is caused by the defective lymph node (LN) positioning of FoxP3(+) CD4(+) CD25(+) regulatory T cells (T reg cells) and the consequent impediment of their function. The FoxP3(+) T reg cells express CCR7 and, after their adoptive transfer, migrate into the LNs of wild-type mice. Here, they proliferate in situ upon antigen stimulation and inhibit the generation of antigen-specific T cells. Conversely, transferred CCR7-deficient T reg cells fail to migrate into the LNs and suppress antigen-induced T cell responses. The transfer of combinations of naive and T reg cells from wild-type and CCR7 KO mice into syngeneic severe combined immunodeficient mice directly demonstrates that CCR7-deficient T reg cells are less effective than their wild-type counterparts in preventing the development of inflammatory bowel diseas

    Procederen na de normalisering

    Get PDF
    Hervorming Sociale Regelgevin

    Hosts of Type II Quasars: an HST Study

    Full text link
    Type II quasars are luminous Active Galactic Nuclei whose centers are obscured by large amounts of gas and dust. In this contribution we present 3-band HST images of nine type II quasars with redshifts 0.25<z<0.4 selected from the Sloan Digital Sky Survey based on their emission line properties. The intrinsic luminosities of these quasars are thought to be in the range -24>M_B>-26, but optical obscuration implies that host galaxies can be studied unencumbered by bright nuclei. Each object has been imaged in three filters (`red', `green' and `blue') placed between the strong emission lines. The spectacular, high quality images reveal a wealth of details about the structure of the host galaxies and their environments. Most galaxies in the sample are ellipticals, but strong deviations from de Vaucouleurs profiles are found, especially in the blue band. We argue that most of these deviations are due to the light from the nucleus scattered off interstellar material in the host galaxy. This scattered component can make a significant contribution to the broad-band flux and complicates the analysis of the colors of the stellar populations in the host galaxy. This extended component can be difficult to notice in unobscured luminous quasars and may bias the results of host galaxy studies.Comment: 6 pages including 2 color figures; proceedings of the 'QSO host galaxies: evolution and environment' conference, Leiden, August 200

    CODEX: a robust and secure secret distribution system

    Full text link

    Manual de prácticas bajas en carbono en el cultivo de cacao a pequeña escala

    Get PDF

    Nested shallow geothermal systems

    Get PDF
    The long-term sustainability of shallow geothermal systems in dense urbanized areas can be potentially compromised by the existence of thermal interfaces. Thermal interferences between systems have to be avoided to prevent the loss of system performance. Nevertheless, in this work we provide evidence of a positive feedback from thermal interferences in certain controlled situations. Two real groundwater heat pump systems were investigated using real exploitation data sets to estimate the thermal energy demand bias and, by extrapolation, to assess the nature of thermal interferences between the systems. To do that, thermal interferences were modelled by means of a calibrated and validated 3D city-scale numerical model reproducing groundwater flow and heat transport. Results obtained showed a 39% (522 MWh·yr-1) energy imbalance towards cooling for one of the systems, which generated a hot thermal plume towards the downgradient and second system investigated. The nested system in the hot thermal plume only used groundwater for heating, thus establishing a positive symbiotic relationship between them. Considering the energy balance of both systems together, a reduced 9% imbalance was found, hence ensuring the long-term sustainability and renewability of the shallow geothermal resource exploited. The nested geothermal systems described illustrate the possibilities of a new management strategy in shallow geothermal energy governance

    Microbiological quality of silage made from by-products of cassava starch extraction and viticulture

    Get PDF
    This study evaluated silages made with varying proportions of viticulture by-products (VC) and starch extraction from cassava (CSE). It attempted to determine the effects of these proportions on the microbial population, fermentative losses, and chemical composition. The treatments were specified as the proportions of VC in the silage (0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, and 1000 g/kg). Silages were&nbsp; evaluated before (0) and after 1, 3, 7, 15, 30, and 60 days of ensiling. The experimental design was completely randomized with five&nbsp; treatments, six storage times and four replications. The increased level of VC in the silage enhanced its dry matter content, ammonia&nbsp; nitrogen (NH3-N), and buffering capacity, and reduced organic matter content. Fifteen days after ensiling, additional VC increased the concentration of soluble carbohydrates. The increased level of VC decreased the count of Clostridium spp. and lactic acid bacteria (LAB). The incidence of yeasts and enterobacteria was low in all treatments at all time points. Over time, losses as effluent and gases increased. Use of increasing proportions from VC in silage made with CSE increased the contents of dry matter and soluble carbohydrates and&nbsp; reduced the fermentative losses of the silage. The increased amount of VC also favoured pH reduction and reduced the proliferation of undesirable yeasts, while increasing the population of LAB

    Dissipation-assisted quantum gates with cold trapped ions

    Full text link
    It is shown that a two-qubit phase gate and SWAP operation between ground states of cold trapped ions can be realised in one step by simultaneously applying two laser fields. Cooling during gate operations is possible without perturbing the computation and the scheme does not require a second ion species for sympathetic cooling. On the contrary, the cooling lasers even stabilise the desired time evolution of the system. This affords gate operation times of nearly the same order of magnitude as the inverse coupling constant of the ions to a common vibrational mode.Comment: 4 pages, 5 figures, substantially revised versio
    • …
    corecore