43,939 research outputs found
On the occurrence of Berezinskii-Kosterlitz-Thouless behavior in highly anisotropic cuprate superconductors
The conflicting observations in the highly anisotropic Bi2Sr2CaCu2O8+x,
vidence for BKT behavior emerging from magnetization data and smeared 3D-xy
behavior, stemming form the temperature dependence of the magnetic in-plane
penetration depth are traced back to the rather small ratio, gsic+/gsic-=0.45,
between the c-axis correlation length probed above (+) and below (-) Tc, and
the comparatively large anisotropy. The latter leads to critical amplitudes
gsic0+,-which are substantially smaller than the distance between two CuO2
double layers. In combination with gsic+/gsic-=0.45 and in contrast to the
situation below Tc the c-axis correlation length gsic exceeds the distance
between two CuO2 double layers very close to Tc only. Below this narrow
temperature regime where 3D-xy fluctuations dominate, there is then an extended
temperature regime where the units with two CuO2 double layers are nearly
uncoupled so that 2D thermal fluctuations dominate and BKT features are
observable.Comment: 4 pages, 4 figure
Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces
The Kondo temperature of single Co adatoms on monolayers of Ag on Cu
and Au(111) is determined using Scanning Tunneling Spectroscopy. of Co on
a single monolayer of Ag on either substrate is essentially the same as that of
Co on a homogenous Ag(111) crystal. This gives strong evidence that the
interaction of surface Kondo impurities with the substrate is very local in
nature. By comparing found for Co on Cu, Ag, and Au (111)-surfaces we
show that the energy scale of the many-electron Kondo state is insensitive to
the properties of surface states and to the energetic position of the projected
bulk band edges.Comment: 4 pages, 3 figure
A general interpolation scheme for thermal fluctuations in superconductors
We present a general interpolation theory for the phenomenological effects of
thermal fluctuations in superconductors. Fluctuations are described by a simple
gauge invariant extension of the gaussian effective potential for the
Ginzburg-Landau static model. The approach is shown to be a genuine variational
method, and to be stationary for infinitesimal gauge variations around the
Landau gauge. Correlation and penetration lengths are shown to depart from the
mean field behaviour in a more or less wide range of temperature below the
critical regime, depending on the class of material considered. The method is
quite general and yields a very good interpolation of the experimental data for
very different materials.Comment: some misprints have been corrected in Eq.(15),(19); more references
and comments have been adde
Correlating the nanostructure of Al-oxide with deposition conditions and dielectric contributions of two-level systems in perspective of superconducting quantum circuits
This work is concerned with Al/Al-oxide(AlO)/Al-layer systems which are
important for Josephson-junction-based superconducting devices such as quantum
bits. The device performance is limited by noise, which has been to a large
degree assigned to the presence and properties of two-level tunneling systems
in the amorphous AlO tunnel barrier. The study is focused on the
correlation of the fabrication conditions, nanostructural and nanochemical
properties and the occurrence of two-level tunneling systems with particular
emphasis on the AlO-layer. Electron-beam evaporation with two different
processes and sputter deposition were used for structure fabrication, and the
effect of illumination by ultraviolet light during Al-oxide formation is
elucidated. Characterization was performed by analytical transmission electron
microscopy and low-temperature dielectric measurements. We show that the
fabrication conditions have a strong impact on the nanostructural and
nanochemical properties of the layer systems and the properties of two-level
tunneling systems. Based on the understanding of the observed structural
characteristics, routes are derived towards the fabrication of
Al/AlO/Al-layers systems with improved properties.Comment: 28 pages, 4 figure
Jahn-Teller Distortion and Ferromagnetism in the Dilute Magnetic Semiconductors GaN:Mn
Using first-principles total-energy methods, we investigate Jahn-Teller
distortions in III-V dilute magnetic semiconductors, GaAs:Mn and GaN:Mn in the
cubic zinc blende structure. The results for an isolated Mn impurity on a Ga
site show that there is no appreciable effect in GaAs, whereas, in GaN there is
a Jahn-Teller effect in which the symmetry around the impurity changes from
T to D or to C. The large effect in GaN occurs because of
the localized d character, which is further enhanced by the distortion. The
lower symmetry should be detectable experimentally in cubic GaN with low Mn
concentration, and should be affected by charge compensation (reductions of
holes and conversion of Mn ions to d with no Jahn-Teller effect).
Jahn-Teller effect is greatly reduced because the symmetry at each Mn site is
lowered due to the Mn-Mn interaction. The tendency toward ferromagnetism is
found to be stronger in GaN:Mn than in GaAs:Mn and to be only slightly reduced
by charge compensation.Comment: 6 pages, 3 figure
LSD: Lyman-break galaxies Stellar populations and Dynamics. I: Mass, metallicity and gas at z~3.1
We present the first results of a project, LSD, aimed at obtaining
spatially-resolved, near-infrared spectroscopy of a complete sample of
Lyman-Break Galaxies at z~3. Deep observations with adaptive optics resulted in
the detection of the main optical lines, such as [OII], Hbeta and [OIII], which
are used to study sizes, SFRs, morphologies, gas-phase metallicities, gas
fractions and effective yields. Optical, near-IR and Spitzer/IRAC photometry is
used to measure stellar mass. We obtain that morphologies are usually complex,
with the presence of several peaks of emissions and companions that are not
detected in broad-band images. Typical metallicities are 10-50% solar, with a
strong evolution of the mass-metallicity relation from lower redshifts. Stellar
masses, gas fraction, and evolutionary stages vary significantly among the
galaxies, with less massive galaxies showing larger fractions of gas. In
contrast with observations in the local universe, effective yields decrease
with stellar mass and reach solar values at the low-mass end of the sample.
This effect can be reproduced by gas infall with rates of the order of the
SFRs. Outflows are present but are not needed to explain the mass-metallicity
relation. We conclude that a large fraction of these galaxies are actively
creating stars after major episodes of gas infall or merging.Comment: MNRAS, in pres
Robust surface electronic properties of topological insulators: Bi2Te3 films grown by molecular beam epitaxy
The surface electronic properties of the important topological insulator
Bi2Te3 are shown to be robust under an extended surface preparation procedure
which includes exposure to atmosphere and subsequent cleaning and
recrystallization by an optimized in-situ sputter-anneal procedure under ultra
high vacuum conditions. Clear Dirac-cone features are displayed in
high-resolution angle-resolved photoemission spectra from the resulting
samples, indicating remarkable insensitivity of the topological surface state
to cleaning-induced surface roughness.Comment: 3 pages, 3 figure
- …