671 research outputs found

    Material aspects for preparing HTS quasiparticle injection devices

    Get PDF
    Quasiparticle (QP) injection devices based on HTS could play an important role in future superconducting applications if material aspects can be better controlled. One reason why this kind of device received little attention in the past is the lack of an appropriate barrier for QP tunnelling. In a series of experiments, we used different barriers to test if they are suitable, i.e. if a current and possibly a voltage gain can be achieved. We improved the performance of planar YBCO/natural barrier/Au devices and a current gain of more than 6 at 40 K was observed. Most devices, however, showed signs of heating effects. Another barrier material was SrTiO3 with layers of 5-6 nm thickness. Current-voltage characteristics showed that the barriers were continuous and we observed current gains of up to 3 at 60 K. PrBa2 Cu3O7-x is an interesting candidate if one could overcome the problem of resonant inelastic tunnelling for QP. In a series of experiments we demonstrated that, even for 3 Mn thin PBCO barriers on a- and c-axis oriented YBa2Cu3O7-x, most devices showed at best a current gain of 1. However, we have indications that a current gain of 10 could be possible with unity voltage gai

    Is manganese-doped diamond a ferromagnetic semiconductor?

    Full text link
    We use density-functional theoretical methods to examine the recent prediction, based on a mean-field solution of the Zener model, that diamond doped by Mn (with spin S=5/2) would be a dilute magnetic semiconductor that remains ferromagnetic well above room temperature. Our findings suggest this to be unlikely, for four reasons: (1) substitutional Mn in diamond has a low-spin S=1/2 ground state; (2) the substitutional site is energetically unfavorable relative to the much larger "divacancy" site; 3) Mn in the divacancy site is an acceptor, but with only hyperdeep levels, and hence the holes are likely to remain localized; (4) the calculated Heisenberg couplings between Mn in nearby divacancy sites are two orders of magnitude smaller than for substitutional Mn in germanium.Comment: 5 pages, 5 figure

    All-optical ion generation for ion trap loading

    Full text link
    We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.Comment: 7 pages, 9 figure

    Probing the Environment with Galaxy Dynamics

    Get PDF
    I present various projects to study the halo dynamics of elliptical galaxies. This allows one to study the outer mass and orbital distributions of ellipticals in different environments, and the inner distributions of groups and clusters themselves.Comment: 5 pages, 2 figs, to appear in Proc. ESO Workshop, Groups of Galaxies in the Nearby Universe (5-9 Dec 2005), eds. I. Saviane, V. Ivanov & J. Borissova (Springer-Verlag

    How Asia Confronts COVID-19 through Technology

    Get PDF
    With societies around the world tackling the Coronavirus pandemic, the role of digital technology has come into focus as a means of augmenting efforts to manage disease and its impacts. What can apps, big data, and digital analytics contribute to such efforts, and what risks do they pose? Asia provides important lessons. Not only have societies in the region long been at the forefront of technological development, but they have also proactively adopted digital solutions as they confront COVID-19. Importantly, Asia has a history of managing highly contagious diseases, and outbreaks like SARS in 2002 or H1N1 in 2009 have provided experiences in risk management and health provision that now powerfully inform both digital and non-digital responses to the current pandemic. The result is a diverse range of different approaches that can teach us much about the advantages and disadvantages of designing tech solutions to fight pandemics.Asian Studie

    Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard

    Get PDF
    This research was supported by the Australian Research Council, the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics, a Grant-in-Aid for Scientific Research (type A), and the State of Bavaria.Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting photons and excitons (electron-hole pairs) in semiconductor microcavities. They have emerged as a robust solid-state platform for next-generation optoelectronic applications as well as for fundamental studies of quantum many-body physics. Importantly, exciton-polaritons are a profoundly open (that is, non-Hermitian) quantum system, which requires constant pumping of energy and continuously decays, releasing coherent radiation. Thus, the exciton-polaritons always exist in a balanced potential landscape of gain and loss. However, the inherent non-Hermitian nature of this potential has so far been largely ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity dramatically modifies the structure of modes and spectral degeneracies in exciton-polariton systems, and, therefore, will affect their quantum transport, localization and dynamical properties. Using a spatially structured optical pump, we create a chaotic exciton-polariton billiard-a two-dimensional area enclosed by a curved potential barrier. Eigenmodes of this billiard exhibit multiple non-Hermitian spectral degeneracies, known as exceptional points. Such points can cause remarkable wave phenomena, such as unidirectional transport, anomalous lasing/absorption and chiral modes. By varying parameters of the billiard, we observe crossing and anti-crossing of energy levels and reveal the non-trivial topological modal structure exclusive to non-Hermitian systems. We also observe mode switching and a topological Berry phase for a parameter loop encircling the exceptional point. Our findings pave the way to studies of non-Hermitian quantum dynamics of exciton-polaritons, which may uncover novel operating principles for polariton-based devices.PostprintPeer reviewe

    Polariton propagation in weak confinement quantum wells

    Full text link
    Exciton-polariton propagation in a quantum well, under centre-of-mass quantization, is computed by a variational self-consistent microscopic theory. The Wannier exciton envelope functions basis set is given by the simple analytical model of ref. [1], based on pure states of the centre-of-mass wave vector, free from fitting parameters and "ad hoc" (the so called additional boundary conditions-ABCs) assumptions. In the present paper, the former analytical model is implemented in order to reproduce the centre-of-mass quantization in a large range of quantum well thicknesses (5a_B < L < inf.). The role of the dynamical transition layer at the well/barrier interfaces is discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier exciton eigenstates are computed, and compared with various theoretical models with different degrees of accuracy. Exciton-polariton transmission spectra in large quantum wells (L>> a_B) are computed and compared with experimental results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The sound agreement between theory and experiment allows to unambiguously assign the exciton-polariton dips of the transmission spectrum to the pure states of the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.

    Melting and Dimensionality of the Vortex Lattice in Underdoped YBa2Cu3O6.60

    Full text link
    Muon spin rotation measurements of the magnetic field distribution in the vortex state of the oxygen deficient high-Tc superconductor YBa{2}Cu{3}O{6.60} reveal a vortex-lattice melting transition at much lower temperature than that in the fully oxygenated material. The transition is best described by a model in which adjacent layers of ``pancake'' vortices decouple in the liquid phase. Evidence is also found for a pinning-induced crossover from a solid 3D to quasi-2D vortex lattice, similar to that observed in the highly anisotropic superconductor Bi{2+x}Sr{2-x}CaCu{2}O{8+y}.Comment: 8 pages, 4 figures, 5 postscript file
    • 

    corecore