677 research outputs found

    Oscillation dynamics of embolic microspheres in flows with red blood cell suspensions

    No full text
    Dynamic nature of particle motion in blood flow is an important determinant of embolization based cancer therapy. Yet, the manner in which the presence of high volume fraction of red blood cells influences the particle dynamics remains unknown. Here, by investigating the motions of embolic microspheres in pressure-driven flows of red blood cell suspensions through capillaries, we illustrate unique oscillatory trends in particle trajectories, which are not observable in Newtonian fluid flows. Our investigation reveals that such oscillatory behavior essentially manifests when three simultaneous conditions, namely, the Reynolds number beyond a threshold limit, degree of confinement beyond a critical limit, and high hematocrit level, are fulfilled simultaneously. Given that these conditions are extremely relevant to fluid dynamics of blood or polymer flow, the observations reported here bear significant implications on embolization based cancer treatment as well as for complex multiphase fluidics involving particle

    Relationship between structure and molecular interactions in monolayers of specially designed aminolipids

    No full text
    Artificial cationic lipids are already recognized as highly efficient gene therapy tools. Here, we focus on another potential use of aminolipids, in their electrically-uncharged state, for the formation of covalently cross-linked, one-molecule-thin films at interfaces. Such films are envisioned for future (bio-)materials applications. To this end, Langmuir monolayers of structurally different aminolipids are comprehensively characterized with the help of highly sensitive surface characterization techniques. Pressure-area isotherms, Brewster angle microscopy, grazing-incidence x-ray diffraction and infrared reflection–absorption spectrometry experiments provide a detailed, comparative molecular picture of the formed monolayers. This physico-chemical study highlights the relationship between chemical structures and intermolecular interactions, which can serve as a basis for the rational design of cross-linked thin films with precisely controlled properties

    The internal structure of the velvet worm projectile slime : a small-angle scattering study

    Get PDF
    For prey capture and defense, velvet worms eject an adhesive slime which has been established as a model system for recyclable complex liquids. Triggered by mechanical agitation, the liquid bio‐adhesive rapidly transitions into solid fibers. In order to understand this mechanoresponsive behavior, here, the nanostructural organization of slime components are studied using small‐angle scattering with neutrons and X‐rays. The scattering intensities are successfully described with a three‐component model accounting for proteins of two dominant molecular weight fractions and nanoscale globules. In contrast to the previous assumption that high molecular weight proteins—the presumed building blocks of the fiber core—are contained in the nanoglobules, it is found that the majority of slime proteins exist freely in solution. Only less than 10% of the slime proteins are contained in the nanoglobules, necessitating a reassessment of their function in fiber formation. Comparing scattering data of slime re‐hydrated with light and heavy water reveals that the majority of lipids in slime are contained in the nanoglobules with homogeneous distribution. Vibrating mechanical impact under exclusion of air neither leads to formation of fibers nor alters the bulk structure of slime significantly, suggesting that interfacial phenomena and directional shearing are required for fiber formation

    Toxic Epidermal Necrolysis after Pemetrexed and Cisplatin for Non-Small Cell Lung Cancer in a Patient with Sharp Syndrome

    Get PDF
    Background: Pemetrexed is an antifolate drug approved for maintenance and second-line therapy, and, in combination with cisplatin, for first-line treatment of advanced nonsquamous non-small cell lung cancer. The side-effect profile includes fatigue, hematological and gastrointestinal toxicity, an increase in hepatic enzymes, sensory neuropathy, and pulmonary and cutaneous toxicity in various degrees. Case Report: We present the case of a 58-year-old woman with history of Sharp's syndrome and adenocarcinoma of the lung, who developed toxic epidermal necrolysis after the first cycle of pemetrexed, including erythema, bullae, extensive skin denudation, subsequent systemic inflammation and severe deterioration in general condition. The generalized skin lesions occurred primarily in the previous radiation field and responded to immunosuppressive treatment with prednisone. Conclusion: Although skin toxicity is a well-known side effect of pemetrexed, severe skin reactions after pemetrexed administration are rare. Caution should be applied in cases in which pemetrexed is given subsequent to radiation therapy, especially in patients with pre-existing skin diseases

    On critical behavior of phase transitions in certain antiferromagnets with complicated ordering

    Full text link
    Within the four-loop \ve expansion, we study the critical behavior of certain antiferromagnets with complicated ordering. We show that an anisotropic stable fixed point governs the phase transitions with new critical exponents. This is supported by the estimate of critical dimensionality NcC=1.445(20)N_c^C=1.445(20) obtained from six loops via the exact relation NcC=1/2NcRN_c^C={1/2} N_c^R established for the real and complex hypercubic models.Comment: Published versio

    Heat-Shock Protein 90 Controls the Expression of Cell-Cycle Genes by Stabilizing Metazoan-Specific Host-Cell Factor HCFC1

    No full text
    Molecular chaperones such as heat-shock proteins (HSPs) help in protein folding. Their function in the cytosol has been well studied. Notably, chaperones are also present in the nucleus, a compartment where proteins enter after completing de novo folding in the cytosol, and this raises an important question about chaperone function in the nucleus. We performed a systematic analysis of the nuclear pool of heat-shock protein 90. Three orthogonal and independent analyses led us to the core functional interactome of HSP90. Computational and biochemical analyses identify host cell factor C1 (HCFC1) as a transcriptional regulator that depends on HSP90 for its stability. HSP90 was required to maintain the expression of HCFC1-targeted cell-cycle genes. The regulatory nexus between HSP90 and the HCFC1 module identified in this study sheds light on the relevance of chaperones in the transcription of cell-cycle genes. Our study also suggests a therapeutic avenue of combining chaperone and transcription inhibitors for cancer treatment

    Critical behavior of certain antiferromagnets with complicated ordering: Four-loop \ve-expansion analysis

    Full text link
    The critical behavior of a complex N-component order parameter Ginzburg-Landau model with isotropic and cubic interactions describing antiferromagnetic and structural phase transitions in certain crystals with complicated ordering is studied in the framework of the four-loop renormalization group (RG) approach in (4-\ve) dimensions. By using dimensional regularization and the minimal subtraction scheme, the perturbative expansions for RG functions are deduced and resummed by the Borel-Leroy transformation combined with a conformal mapping. Investigation of the global structure of RG flows for the physically significant cases N=2 and N=3 shows that the model has an anisotropic stable fixed point governing the continuous phase transitions with new critical exponents. This is supported by the estimate of the critical dimensionality Nc=1.445(20)N_c=1.445(20) obtained from six loops via the exact relation Nc=1/2ncN_c={1/2} n_c established for the complex and real hypercubic models.Comment: LaTeX, 16 pages, no figures. Expands on cond-mat/0109338 and includes detailed formula

    The reliability of two visual motor integration tests used with children

    Full text link
    Occupational therapists often assess the visual motor integration (VMI) skills of children and young people. It is important that therapists use tools with strong psychometric properties. This study aims to examine the reliability of 2 VMI tests. Ninety-two children between the ages of 5 and 17 years (response rate of 31%) completed 2 VMI tests: the Developmental Test of Visual Motor Integration (DTVMI) and the Full Range Test of Visual Motor Integration (FRTVMI). Cronbach\u27s alpha coefficient was used to examine the internal consistency of the 2 VMI tests whereas Spearman\u27s rho correlation was used to evaluate the test&ndash;retest reliability, intrarater reliability, and interrater reliability of the 2 VMI tests. The Cronbach\u27s alpha coefficient for the DTVMI was .82 and .72 for the FRTVMI. The test&ndash;retest reliability coefficient was .73 (p = .000) for the DTVMI and .49 (p = .05) for the FRTVMI. The interrater correlation was significant for both the DTVMI at .94 (p = .000) and FRTVMI at .68 (p = .001). The DTVMI intrarater reliability correlation result was .90 (p = .000) and the FRTVMI at .85 (p = .000). Overall, the DTVMI exhibited a higher level of reliability than the FRTVMI. Both VMI tests appear to exhibit reasonable levels of reliability and are recommended for use with children and young people.<br /

    CDMSlite: A Search for Low-Mass WIMPs using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    Get PDF
    SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for 10 live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.Comment: 7 pages, 4 figure
    • 

    corecore