3,484 research outputs found

    Factors that Influence Middle School Mathematics Teachers’ Willingness to Collaborate with School Librarians

    Get PDF
    Collaboration between school libraries and classroom teachers can have a powerful impact on student learning. School librarians routinely collaborate with English language arts and social studies curriculum and less frequently with areas in STEM education. This research examines middle school mathematics teachers’ extent of or willingness to collaborate with the school librarian in one large urban Midwestern school district. This quantitative descriptive study sought to answer the question “What factors influence middle school mathematics teachers’ extent or willingness to collaborate with school librarian?” This research looks at, from the middle school mathematics teacher’s perception, the roles and responsibilities of the school librarian. Specifically, this study looked at the professional library skills, instructional and teaching abilities, and the professional disposition of the school librarian to determine if these factors had any influence on the middle school mathematics teachers’ extent or willingness to collaborate. This study was conducted through the lens of the theory of social constructivism. Data was collected through an online survey of one district’s middle school mathematics teachers. Results of the research showed several things: 1) participants had an overall positive perception of the school library, 2) participants were often unaware of the resources and services available to the mathematics curriculum, 3) ii currently there is a low incident of collaboration between mathematics teachers and librarians, and 4) a majority of participants would be willing to collaborate with the school librarian in the future. The results of this study have implications for school library professional development and school library preservice training

    First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory

    Full text link
    We report on the first long-term application of squeezed vacuum states of light to improve the shot-noise-limited sensitivity of a gravitational-wave observatory. In particular, squeezed vacuum was applied to the German/British detector GEO600 during a period of three months from June to August 2011, when GEO600 was performing an observational run together with the French/Italian Virgo detector. In a second period squeezing application continued for about 11 months from November 2011 to October 2012. During this time, squeezed vacuum was applied for 90.2% (205.2 days total) of the time that science-quality data was acquired with GEO600. Sensitivity increase from squeezed vacuum application was observed broad-band above 400Hz. The time average of gain in sensitivity was 26% (2.0dB), determined in the frequency band from 3.7kHz to 4.0kHz. This corresponds to a factor of two increase in observed volume of the universe, for sources in the kHz region (e.g. supernovae, magnetars). We introduce three new techniques to enable stable long-term application of squeezed light, and show that the glitch-rate of the detector did not increase from squeezing application. Squeezed vacuum states of light have arrived as a permanent application, capable of increasing the astrophysical reach of gravitational-wave detectors.Comment: 4 pages, 4 figure

    Changes in union membership over time : a panel analysis for West Germany

    Get PDF
    Despite the apparent stability of the wage bargaining institutions in West Germany, aggregate union membership has been declining dramatically since the early 90's. However, aggregate gross membership numbers do not distinguish by employment status and it is impossible to disaggregate these sufficiently. This paper uses four waves of the German Socioeconomic Panel in 1985, 1989, 1993, and 1998 to perform a panel analysis of net union membership among employees. We estimate a correlated random effects probit model suggested in Chamberlain (1984) to take proper account of individual specfic effects. Our results suggest that at the individual level the propensity to be a union member has not changed considerably over time. Thus, the aggregate decline in membership is due to composition effects. We also use the estimates to predict net union density at the industry level based on the IAB employment subsample for the time period 1985 to 1997. JEL - Klassifikation: J

    Double optical spring enhancement for gravitational-wave detectors

    Get PDF
    Currently planned second-generation gravitational-wave laser interferometers such as Advanced LIGO exploit the extensively investigated signal-recycling technique. Candidate Advanced LIGO configurations are usually designed to have two resonances within the detection band, around which the sensitivity is enhanced: a stable optical resonance and an unstable optomechanical resonance—which is upshifted from the pendulum frequency due to the so-called optical-spring effect. As an alternative to a feedback control system, we propose an all-optical stabilization scheme, in which a second optical spring is employed, and the test mass is trapped by a stable ponderomotive potential well induced by two carrier light fields whose detunings have opposite signs. The double optical spring also brings additional flexibility in reshaping the noise spectral density and optimizing toward specific gravitational-wave sources. The presented scheme can be extended easily to a multi-optical-spring system that allows further optimization

    Heat transfer and pressure drop correlations for laminar flow in an in-line and staggered array of circular cylinders

    Get PDF
    Enhanced heat transfer surfaces based on cylindrically shaped pin fins with wire diameters in the range of 100 ”m were analyzed. The design is based on a high pin length to diameter ratio in the range of 20–100. Correlations for thermal and fluid dynamic characteristics of these fine wire structures are not available in literature. An in-line and staggered arrangement of pins were simulated for a variety of operational and geometrical conditions with a twodimensional computational thermal and fluid dynamics model. Correlations for Nusselt number and friction factor with respect to Reynolds number and geometry were derived thereby. Reynolds numbers based on the wire diameter are in the range of 3–60. The correlations for the Nusselt number and friction factor can predict 93% and 97% of the simulated data within ±10%

    Forecast, observation and modelling of a deep stratospheric intrusion event over Europe

    Get PDF
    A wide range of measurements was carried out in central and southeastern Europe within the framework of the EU-project STACCATO (Influence of Stratosphere-Troposphere Exchange in a Changing Climate on Atmospheric Transport and Oxidation Capacity) with the principle goal to create a comprehensive data set on stratospheric air intrusions into the troposphere along a rather frequently observed pathway over central Europe from the North Sea to the Mediterranean Sea. The measurements were based on predictions by suitable quasi-operational trajectory calculations using ECMWF forecast data. A predicted deep Stratosphere to Troposphere Transport (STT) event, encountered during the STACCATO period on 20-21 June 2001, could be followed by the measurements network almost from its inception. Observations provide evidence that the intrusion affected large parts of central and southeastern Europe. Especially, the ozone lidar observations on 20-21 June 2001 at Garmisch-Partenkirchen, Germany captured the evolution of two marked tongues of high ozone with the first one reaching almost a height of 2 km, thus providing an excellent data set for model intercomparisons and validation. In addition, for the first time to our knowledge concurrent measurements of the cosmogenic radionuclides <sup>10</sup>Be and <sup>7</sup>Be and their ratio <sup>10</sup>Be/<sup>7</sup>Be are presented together as stratospheric tracers in a case study of a stratospheric intrusion. The ozone tracer columns calculated with the FLEXPART model were found to be in good agreement with water vapour satellite images, capturing the evolution of the observed dry streamers of stratospheric origin. Furthermore, the time-height cross section of ozone tracer simulated with FLEXPART over Garmisch-Partenkirchen captures with many details the evolution of the two observed high-ozone filaments measured with the IFU lidar, thus demonstrating the considerable progress in model simulations. Finally, the modelled ozone (operationally available since October 1999) from the ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric model is shown to be in very good agreement with the observations during this case study, which provides the first successful validation of a chemical tracer that is used operationally in a weather forecast model. This suggests that coupling chemistry and weather forecast models may significantly improve both weather and chemical forecasts in the future

    Capturing Genetic Variation during Ecological Restorations: An Example from Kankakee Sands in Indiana

    Get PDF
    Genetic variation in populations, both natural and restored, is usually considered crucial for response to short term environmental stresses and for long term evolutionary change. To have the best chance of successful long-term survival, restored populations should reflect the extant variation found in remnants, but restored sites may suffer from genetic bottlenecks as a result of founder effects. Kankakee Sands is a large-scale restoration being conducted by The Nature Conservancy (TNC) in northwestern Indiana. Our goal was to test for loss of genetic variation in restored plant populations by comparing them with TNC’s seed source nursery and with local remnant populations that were the source of nursery seed and of the first few restored sites. Allozyme analysis of Baptisia leucantha, Asclepias incarnata, Coreopsis tripteris, and Zizia aurea showed low levels of allozyme diversity within all species and reductions in polymorphism, alleles per locus, and expected heterozygosity between remnants and restorations for all species except A. incarnata. Almost all lost alleles were rare; restored populations contained almost 90% of alleles at polymorphic loci that occurred in remnants at frequencies greater than one percent. Allele frequencies for most loci did not differ between remnants and restored sites. Most species showed significant allele frequency differentiation among remnant populations and among restored sites. Our results indicate that seed collection techniques used at Kankakee Sands captured the great majority of allozyme variation present in seed source remnant populations

    Simulation of a finishing operation : milling of a turbine blade and influence of damping

    Get PDF
    Milling is used to create very complex geometries and thin parts, such as turbine blades. Irreversible geometric defects may appear during finishing operations when a high surface quality is expected. Relative vibrations between the tool and the workpiece must be as small as possible, while tool/workpiece interactions can be highly non-linear. A general virtual machining approach is presented and illustrated. It takes into account the relative motion and vibrations of the tool and the workpiece. Both deformations of the tool and the workpiece are taken into account. This allows predictive simulations in the time domain. As an example the effect of damping on the behavior during machining of one of the 56 blades of a turbine disk is analysed in order to illustrate the approach potential
    • 

    corecore