11 research outputs found

    Cotton and Surgical Masks—What Ecological Factors Are Relevant for Their Sustainability?

    No full text
    With the COVID-19 pandemic, wearing facemasks became common. Many initiatives arose to develop new types of reusable textile masks in order to overcome a shortage of surgical masks for the health care personnel and for the civil society. Having such high demand of facemasks raises the question about what factors define their environmental sustainability. This paper presents a first simplified Life-Cycle-Assessment (LCA) comparing surgical masks and 2-layered cotton masks. The aim of the paper is to identify and understand the relevant ecological factors in order to support decision making on how textile masks could be designed in a more sustainable manner. The results of our simplified LCA show that the cotton masks were performing better than the surgical masks and vice versa depending on the environmental impact that was looked at. It was also found that the lifespan and the weight of the cotton masks are two variables having a great importance for their overall environmental performance

    Factors Allowing Users to Influence the Environmental Performance of Their T-Shirt

    No full text
    Cotton t-shirts are a basic clothing item that everyone possesses. To date, no studies have taken into account the consumers’ perspective, even though they can play an important role regarding the actual environmental impact of their clothing items. Therefore, a life cycle assessment study was performed in order to inform the public about the environmental impacts of a typical cotton t-shirt and the relevance of consumer behavior (i.e., washing and drying) on the overall impacts along the entire life cycle of such a t-shirt. The aim was to provide hints, allowing users to reduce the impacts of their t-shirts. While the production phase was based on global data, the use phase focused on Switzerland as the study was established in the context of an exhibition in the Textile Museum in St. Gallen (Switzerland). With this study, it was found that users have various choices in order to make their t-shirt more sustainable. Wearing the t-shirt throughout its entire life expectancy was found to be the most important factor influencing the overall environmental performance of such a clothing item. The relevance of filling the washing machine to maximum capacity, washing at a lower temperature, or using a tumbler was also illustrated. In addition, choosing materials other than cotton or choosing textiles labelled for lower environmental impacts during production could further improve the environmental performance of t-shirts

    How the Lack of Chitosan Characterization Precludes Implementation of the Safe-by-Design Concept

    No full text
    Efficacy and safety of nanomedicines based on polymeric (bio)materials will benefit from a rational implementation of a Safe-by-Design (SbD) approach throughout their development. In order to achieve this goal, however, a standardization of preparation and characterization methods and their accurate reporting is needed. Focusing on the example of chitosan, a biopolymer derived from chitin and frequently used in drug and vaccine delivery vector preparation, this review discusses the challenges still to be met and overcome prior to a successful implementation of the SbD approach to the preparation of chitosan-based protein drug delivery system

    Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far

    No full text
    The physicochemical properties of nanobiomaterials, such as their small size and high surface area ratio, make them attractive, novel drug-carriers, with increased cellular interaction and increased permeation through several biological barriers. However, these same properties hinder any extrapolation of knowledge from the toxicity of their raw material. Though, as suggested by the Safe-by-Design (SbD) concept, the hazard assessment should be the starting point for the formulation development. This may enable us to select the most promising candidates of polymeric nanobiomaterials for safe drug-delivery in an early phase of innovation. Nowadays the majority of reports on polymeric nanomaterials are focused in optimizing the nanocarrier features, such as size, physical stability and drug loading efficacy, and in performing preliminary cytocompatibility testing and proving effectiveness of the drug loaded formulation, using the most diverse cell lines. Toxicological studies exploring the biological effects of the polymeric nanomaterials, particularly regarding immune system interaction are often disregarded. The objective of this review is to illustrate what is known about the biological effects of polymeric nanomaterials and to see if trends in toxicity and general links between physicochemical properties of nanobiomaterials and their effects may be derived. For that, data on chitosan, polylactic acid (PLA), polyhydroxyalkanoate (PHA), poly(lactic-co-glycolic acid) (PLGA) and policaprolactone (PCL) nanomaterials will be evaluated regarding acute and repeated dose toxicity, inflammation, oxidative stress, genotoxicity, toxicity on reproduction and hemocompatibility. We further intend to identify the analytical and biological tests described in the literature used to assess polymeric nanomaterials toxicity, to evaluate and interpret the available results and to expose the obstacles and challenges related to the nanomaterial testing. At the present time, considering all the information collected, the hazard assessment and thus also the SbD of polymeric nanomaterials is still dependent on a case-by-case evaluation. The identified obstacles prevent the identification of toxicity trends and the generation of an assertive toxicity database. In the future, in vitro and in vivo harmonized toxicity studies using unloaded polymeric nanomaterials, extensively characterized regarding their intrinsic and extrinsic properties should allow to generate such database. Such a database would enable us to apply the SbD approach more efficiently

    Molecular Modeling for Nanomaterial-Biology Interactions: Opportunities, Challenges, and Perspectives

    No full text
    Injection of nanoparticles (NP) into the bloodstream leads to the formation of a so-called "nano-bio" interface where dynamic interactions between nanoparticle surfaces and blood components take place. A common consequence is the formation of the protein corona, that is, a network of adsorbed proteins that can strongly alter the surface properties of the nanoparticle. The protein corona and the resulting structural changes experienced by adsorbed proteins can lead to substantial deviations from the expected cellular uptake as well as biological responses such as NP aggregation and NP-induced protein fibrillation, NP interference with enzymatic activity, or the exposure of new antigenic epitopes. Achieving a detailed understanding of the nano-bio interface is still challenging due to the synergistic effects of several influencing factors like pH, ionic strength, and hydrophobic effects, to name just a few. Because of the multiscale complexity of the system, modeling approaches at a molecular level represent the ideal choice for a detailed understanding of the driving forces and, in particular, the early events at the nano-bio interface. This review aims at exploring and discussing the opportunities and perspectives offered by molecular modeling in this field through selected examples from literature

    Chitosan Nanoparticles: Shedding Light on Immunotoxicity and Hemocompatibility

    No full text
    Nanoparticles (NPs) assumed an important role in the area of drug delivery. Despite the number of studies including NPs are growing over the last years, their side effects on the immune system are often ignored or omitted. One of the most studied polymers in the nano based drug delivery system field is chitosan (Chit). In the scientific literature, although the physicochemical properties [molecular weight (MW) or deacetylation degree (DDA)] of the chitosan, endotoxin contamination and appropriate testing controls are rarely reported, they can strongly influence immunotoxicity results. The present work aimed to study the immunotoxicity of NPs produced with different DDA and MW Chit polymers and to benchmark it against the polymer itself. Chit NPs were prepared based on the ionic gelation of Chit with sodium tripolyphosphate (TPP). This method allowed the production of two different NPs: Chit 80% NPs (80% DDA) and Chit 93% NPs (93% DDA). In general, we found greater reduction in cell viability induced by Chit NPs than the respective Chit polymers when tested in vitro using human peripheral blood monocytes (PBMCs) or RAW 264.7 cell line. In addition, Chit 80% NPs were more cytotoxic for PBMCs, increased reactive oxygen species (ROS) production (above 156 μg/mL) in the RAW 264.7 cell line and interfered with the intrinsic pathway of coagulation (at 1 mg/mL) when compared to Chit 93% NPs. On the other hand, only Chit 93% NPs induced platelet aggregation (at 2 mg/mL). Although Chit NPs and Chit polymers did not stimulate the nitric oxide (NO) production in RAW 264.7 cells, they induced a decrease in lipopolysaccharide (LPS)-induced NO production at all tested concentrations. None of Chit NPs and polymers caused hemolysis, nor induced PBMCs to secrete TNF-α and IL-6 cytokines. From the obtained results we concluded that the DDA of the Chit polymer and the size of Chit NPs influence the in vitro immunotoxicity results. As the NPs are more cytotoxic than the corresponding polymers, one should be careful in the extrapolation of trends from the polymer to the NPs, and in the comparisons among delivery systems prepared with different DDA chitosans

    Evaluation of Allogeneic Bone-Marrow-Derived and Umbilical Cord Blood-Derived Mesenchymal Stem Cells to Prevent the Development of Osteoarthritis in An Equine Model

    No full text
    International audienceOsteoarthritis (OA) is a significant cause of pain in both humans and horses with a high socio-economic impact. The horse is recognized as a pertinent model for human OA. In both species, regenerative therapy with allogeneic mesenchymal stem cells (MSCs) appears to be a promising treatment but, to date, no in vivo studies have attempted to compare the effects of different cell sources on the same individuals. The objective of this study is to evaluate the ability of a single blinded intra-articular injection of allogeneic bone-marrow (BM) derived MSCs and umbilical cord blood (UCB) derived MSC to limit the development of OA-associated pathological changes compared to placebo in a post-traumatic OA model applied to all four fetlock joints of eight horses. The effect of the tissue source (BM vs. UCB) is also assessed on the same individuals. Observations were carried out using clinical, radiographic, ultrasonographic, and magnetic resonance imaging methods as well as biochemical analysis of synovial fluid and postmortem microscopic and macroscopic evaluations of the joints until Week 12. A significant reduction in the progression of OA-associated changes measured with imaging techniques, especially radiography, was observed after injection of bone-marrow derived mesenchymal stem cells (BM-MSCs) compared to contralateral placebo injections. These results indicate that allogeneic BM-MSCs are a promising treatment for OA in horses and reinforce the importance of continuing research to validate these results and find innovative strategies that will optimize the therapeutic potential of these cells. However, they should be considered with caution given the low number of units per group

    An experimentally induced osteoarthritis model in horses performed on both metacarpophalangeal and metatarsophalangeal joints: Technical, clinical, imaging, biochemical, macroscopic and microscopic characterization

    No full text
    International audienceOsteoarthritis is a common cause of pain and economic loss in both humans and horses. The horse is recognized as a suitable model for human osteoarthritis, because the thickness, structure, and mechanical properties of equine articular cartilage are highly comparable to those of humans. Although a number of equine experimental osteoarthritis models have been described in the literature, these cases generally involve the induction of osteoarthritis in just one joint of each animal. This approach necessitates the involvement of large numbers of horses to obtain reliable data and thus limits the use of this animal model, for both economic and ethical reasons. This study adapts an established equine model of post-traumatic osteoarthritis to induce osteoarthritis-associated lesions in all 4 fetlock joints of the same horse in order to reduce the number of animals involved and avoid individual variability, thus obtaining a more reliable method to evaluate treatment efficacy in future studies. The objectives are to assess the feasibility of the procedure, evaluate variability of the lesions according to interindividual and operated-limb position and describe the spontaneous evolution of osteoarthritis-associated pathological changes over a twelve-week period. The procedure was well tolerated by all 8 experimental horses and successfully induced mild osteoarthritis-associated changes in the four fetlock joints of each horse. Observations were carried out using clinical, radiographic, ultrasonographic, and magnetic resonance imaging methods as well as biochemical analyses of synovial fluid and postmortem microscopic and macroscopic evaluations of the joints. No significant differences were found in the progression of osteoarthritis-associated changes between horses or between the different limbs, with the exception of higher synovial effusion in hind fetlocks compared to front fetlocks and higher radiographic scores for left fetlocks compared to the right. This model thus appears to be a reliable means to evaluate the efficacy of new treatments in horses, and may be of interest for translational studies in human medicine
    corecore