18,274 research outputs found
Kinetic Vlasov Simulations of collisionless magnetic Reconnection
A fully kinetic Vlasov simulation of the Geospace Environment Modeling (GEM)
Magnetic Reconnection Challenge is presented. Good agreement is found with
previous kinetic simulations using particle in cell (PIC) codes, confirming
both the PIC and the Vlasov code. In the latter the complete distribution
functions () are discretised on a numerical grid in phase space.
In contrast to PIC simulations, the Vlasov code does not suffer from numerical
noise and allows a more detailed investigation of the distribution functions.
The role of the different contributions of Ohm's law are compared by
calculating each of the terms from the moments of the . The important role
of the off--diagonal elements of the electron pressure tensor could be
confirmed. The inductive electric field at the X--Line is found to be dominated
by the non--gyrotropic electron pressure, while the bulk electron inertia is of
minor importance. Detailed analysis of the electron distribution function
within the diffusion region reveals the kinetic origin of the non--gyrotropic
terms
Spacelab 3: Research in microgravity
The Spacelab 3 mission, which focused on research in microgravity, took place during the period April 29 through May 6, 1985. Spacelab 3 was the second flight of the National Aeronautics and Space Administration's modular Shuttle-borne research facility. An overview of the mission is presented. Preliminary scientific results from the mission were presented by investigators at a symposium held at Marshall Space Flight Center on December 4, 1985. This special issue is based on reports presented at that symposium
Modeling of RTS noise in MOSFETs under steady-state and large-signal excitation
The behavior of RTS noise in MOSFETs under large-signal excitation is experimentally studied. Our measurements show a significant transient effect, in line with earlier reports. We present a new physical model to describe this transient behavior and to predict RTS noise in MOSFETs under large-signal excitation. With only three model parameters the behavior is well described, contrary to existing models
Recommended from our members
The peregrine falcon's rapid dive: on the adaptedness of the arm skeleton and shoulder girdle
During a dive, peregrine falcons (Falco peregrinus) can reach a velocity of up to 320 km h− 1. Our computational fluid dynamics simulations show that the forces that pull on the wings of a diving peregrine can reach up to three times the falcon’s body mass at a stoop velocity of 80 m s− 1 (288 km h− 1). Since the bones of the wings and the shoulder girdle of a diving peregrine falcon experience large mechanical forces, we investigated these bones. For comparison, we also investigated the corresponding bones in European kestrels (Falco tinnunculus), sparrow hawks (Accipiter nisus) and pigeons (Columba livia domestica). The normalized bone mass of the entire arm skeleton and the shoulder girdle (coracoid, scapula, furcula) was significantly higher in F. peregrinus than in the other three species investigated. The midshaft cross section of the humerus of F. peregrinus had the highest second moment of area. The mineral densities of the humerus, radius, ulna, and sternum were highest in F. peregrinus, indicating again a larger overall stability of these bones. Furthermore, the bones of the arm and shoulder girdle were strongest in peregrine falcons
Intrinsic and extrinsic x-ray absorption effects in soft x-ray diffraction from the superstructure in magnetite
We studied the (001/2) diffraction peak in the low-temperature phase of
magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3
and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin
films and in-situ cleaved single crystals. From the comparison we have been
able to determine quantitatively the contribution of intrinsic absorption
effects, thereby arriving at a consistent result for the (001/2) diffraction
peak spectrum. Our data also allow for the identification of extrinsic effects,
e.g. for a detailed modeling of the spectra in case a "dead" surface layer is
present that is only absorbing photons but does not contribute to the
scattering signal.Comment: to appear in Phys. Rev.
Iron porphyrin molecules on Cu(001): Influence of adlayers and ligands on the magnetic properties
The structural and magnetic properties of Fe octaethylporphyrin (OEP)
molecules on Cu(001) have been investigated by means of density functional
theory (DFT) methods and X-ray absorption spectroscopy. The molecules have been
adsorbed on the bare metal surface and on an oxygen-covered surface, which
shows a reconstruction. In order to allow
for a direct comparison between magnetic moments obtained from sum-rule
analysis and DFT we calculate the dipolar term , which is also
important in view of the magnetic anisotropy of the molecule. The measured
X-ray magnetic circular dichroism shows a strong dependence on the photon
incidence angle, which we could relate to a huge value of , e.g. on
Cu(001) amounts to -2.07\,\mbo{} for normal incidence leading to a
reduction of the effective spin moment . Calculations have also
been performed to study the influence of possible ligands such as Cl and O
atoms on the magnetic properties of the molecule and the interaction between
molecule and surface, because the experimental spectra display a clear
dependence on the ligand, which is used to stabilize the molecule in the gas
phase. Both types of ligands weaken the hybridization between surface and
porphyrin molecule and change the magnetic spin state of the molecule, but the
changes in the X-ray absorption are clearly related to residual Cl ligands.Comment: 17 figures, full articl
Physical Aspects of Axonemal Beating and Swimming
We discuss a two-dimensional model for the dynamics of axonemal deformations
driven by internally generated forces of molecular motors. Our model consists
of an elastic filament pair connected by active elements. We derive the dynamic
equations for this system in presence of internal forces. In the limit of small
deformations, a perturbative approach allows us to calculate filament shapes
and the tension profile. We demonstrate that periodic filament motion can be
generated via a self-organization of elastic filaments and molecular motors.
Oscillatory motion and the propagation of bending waves can occur for an
initially non-moving state via an instability termed Hopf bifurcation. Close to
this instability, the behavior of the system is shown to be independent of
microscopic details of the axoneme and the force-generating mechanism. The
oscillation frequency however does depend on properties of the molecular
motors. We calculate the oscillation frequency at the bifurcation point and
show that a large frequency range is accessible by varying the axonemal length
between 1 and 50m. We calculate the velocity of swimming of a flagellum
and discuss the effects of boundary conditions and externally applied forces on
the axonemal oscillations.Comment: 14 pages, 8 figures, REVTE
Desenvolvimento sustentável da Bacia Leiteira de Nossa Senhora da Glória no semi-árido sergipano.
Foram realizados dois encontros com técnicos e produtores para resgatar a história da Bacia Leiteira de Nossa Senhora da Glória e subsidiar o inÃcio dos trabalhos de rede de referência do Projeto Glória. Nos relatos e debates alguns temas foram amplamente discutidos: água, alimentação do gado, polÃticas públicas, mercado e agrotecnologia. Através das discussões pode-se concluir que é necessário um trabalho mais participativo para que técnicos e produtores encontrem tecnologias adequadas e se apropriem delas para alcançar a sustentabilidade da Bacia Leiteira de Nossa Senhora da Glória.1 CD-ROM
Exploration of Non-Resonant Divertor Features on the Compact Toroidal Hybrid
Non-resonant divertors (NRDs) separate the confined plasma from the
surrounding plasma facing components (PFCs). The resulting striking field line
intersection pattern on these PFCs is insensitive to plasma equilibrium
effects. However, a complex scrape-off layer (SOL), created by chaotic magnetic
topology in the plasma edge, connects the core plasma to the PFCs through
varying magnetic flux tubes. The Compact Toroidal Hybrid (CTH) serves as a
test-bed to study this by scanning across its inductive current. Simulations
observe a significant change of the chaotic edge structure and an effective
distance between the confined plasma and the instrumented wall targets. The
intersection pattern is observed to be a narrow helical band, which we claim is
a resilient strike line pattern. However, signatures of finger-like structures,
defined as heteroclinic tangles in chaotic domains, within the plasma edge
connect the island chains to this resilient pattern. The dominant connection
length field lines intersecting the targets are observed via heat flux
modelling with EMC3-EIRENE. At low inductive current levels, the excursion of
the field lines resembles a limited plasma wall scenario. At high currents, a
private flux region is created in the area where the helical strike line
pattern splits into two bands. These bands are divertor legs with distinct SOL
parallel particle flow channels. The results demonstrate the NRD strike line
pattern resiliency within CTH, but also show the underlying chaotic edge
structure determining if the configuration is diverted or limited. This work
supports future design efforts for a mechanical structure for the NRD.Comment: 26 pages, 16 figure
- …