6 research outputs found

    Impact of robot antenna calibration on dual-frequency smartphone-based high-accuracy positioning: a case study using the Huawei Mate20X

    Get PDF
    The access to Android-based Global Navigation Satellite Systems (GNSS) raw measurements has become a strong motivation to investigate the feasibility of smartphone-based positioning. Since the beginning of this research, the smartphone GNSS antenna has been recognized as one of the main limitations. Besides multipath (MP), the radiation pattern of the antenna is the main site-dependent error source of GNSS observations. An absolute antenna calibration has been performed for the dual-frequency Huawei Mate20X. Antenna phase center offset (PCO) and variations (PCV) have been estimated to correct for antenna impact on the L1 and L5 phase observations. Accordingly, we show the relevance of considering the individual PCO and PCV for the two frequencies. The PCV patterns indicate absolute values up to 2 cm and 4 cm for L1 and L5, respectively. The impact of antenna corrections has been assessed in different multipath environments using a high-accuracy positioning algorithm employing an undifferenced observation model and applying ambiguity resolution. Successful ambiguity resolution is shown for a smartphone placed in a low multipath environment on the ground of a soccer field. For a rooftop open-sky test case with large multipath, ambiguity resolution was successful in 19 out of 35 data sets. Overall, the antenna calibration is demonstrated being an asset for smartphone-based positioning with ambiguity resolution, showing cm-level 2D root mean square error (RMSE)

    Analytical volume model for optimized spatial radar bat detection in onshore wind parks

    Get PDF
    To develop mitigation measures for the protection of bats in close proximity to onshore wind turbines, new detection techniques covering large-scale environments and techniques, which are able to track individuals are required. Radar based observations, successfully applied in ornithological studies, offer a promising potential, but come with challenges regarding the comparability of measurements and noise interference (ground clutter) from objects within detection range. This paper presents improvements of a commercially available inexpensive pulse radar for 3D spatial detection of bat-sized objects in onshore wind parks. A new analytical spatial detection volume model is presented incorporating calibrated radar data and landscape parameters such as clutter. Computer simulation programs to process the analytical spatial detection volume model were developed. For model calibration, the minimum signal power of the radar was experimentally determined with the radar cross section (RCS) of an artificial bat (similar to Nyctalus noctula), resulting in a maximum detection range of 800 m and a corresponding RCS of 12.7 cm2. Additionally, the spatial volume for radar detection was optimized with a clutter shielding fence (CSF). Adjusting the volume model by incorporating a theoretical model of the CSF, an extension of the detection volume by a factor of 2.5 was achieved, while the total volume of a 105o horizontal angular radar image section yields 0.0105 km3. Extrapolation and comparison with state-of-the-art acoustic bat detection result in a 270 times larger volume, confirming the large-scale detection capabilities of the pulse radar

    Status of the BELLE II Pixel Detector

    Get PDF
    The Belle II experiment at the super KEK B-factory (SuperKEKB) in Tsukuba, Japan, has been collecting e+e−e^+e^− collision data since March 2019. Operating at a record-breaking luminosity of up to 4.7×1034cm−2s−14.7×10^{34} cm^{−2}s^{−1}, data corresponding to 424fb−1424 fb^{−1} has since been recorded. The Belle II VerteX Detector (VXD) is central to the Belle II detector and its physics program and plays a crucial role in reconstructing precise primary and decay vertices. It consists of the outer 4-layer Silicon Vertex Detector (SVD) using double sided silicon strips and the inner two-layer PiXel Detector (PXD) based on the Depleted P-channel Field Effect Transistor (DePFET) technology. The PXD DePFET structure combines signal generation and amplification within pixels with a minimum pitch of (50×55)μm2(50×55) μm^2. A high gain and a high signal-to-noise ratio allow thinning the pixels to 75μm75 μm while retaining a high pixel hit efficiency of about 9999%. As a consequence, also the material budget of the full detector is kept low at ≈0.21≈0.21%XX0\frac{X}{X_0} per layer in the acceptance region. This also includes contributions from the control, Analog-to-Digital Converter (ADC), and data processing Application Specific Integrated Circuits (ASICs) as well as from cooling and support structures. This article will present the experience gained from four years of operating PXD; the first full scale detector employing the DePFET technology in High Energy Physics. Overall, the PXD has met the expectations. Operating in the intense SuperKEKB environment poses many challenges that will also be discussed. The current PXD system remains incomplete with only 20 out of 40 modules having been installed. A full replacement has been constructed and is currently in its final testing stage before it will be installed into Belle II during the ongoing long shutdown that will last throughout 2023

    Impact of robot antenna calibration on dual-frequency smartphone-based high-accuracy positioning: a case study using the Huawei Mate20X

    No full text
    The access to Android-based Global Navigation Satellite Systems (GNSS) raw measurements has become a strong motivation to investigate the feasibility of smartphone-based positioning. Since the beginning of this research, the smartphone GNSS antenna has been recognized as one of the main limitations. Besides multipath (MP), the radiation pattern of the antenna is the main site-dependent error source of GNSS observations. An absolute antenna calibration has been performed for the dual-frequency Huawei Mate20X. Antenna phase center offset (PCO) and variations (PCV) have been estimated to correct for antenna impact on the L1 and L5 phase observations. Accordingly, we show the relevance of considering the individual PCO and PCV for the two frequencies. The PCV patterns indicate absolute values up to 2 cm and 4 cm for L1 and L5, respectively. The impact of antenna corrections has been assessed in different multipath environments using a high-accuracy positioning algorithm employing an undifferenced observation model and applying ambiguity resolution. Successful ambiguity resolution is shown for a smartphone placed in a low multipath environment on the ground of a soccer field. For a rooftop open-sky test case with large multipath, ambiguity resolution was successful in 19 out of 35 data sets. Overall, the antenna calibration is demonstrated being an asset for smartphone-based positioning with ambiguity resolution, showing cm-level 2D root mean square error (RMSE).Gottfried Wilhelm Leibniz Universität Hannover (1038

    Quality analysis of dual-frequency smartphone-based ionospheric TEC measurements: what can be achieved?

    Get PDF
    The growing quality of smartphone-based Global Navigation Satellite Systems (GNSS) chipsets opens a new frontier for scientific research in positioning, navigation and timing applications. The portability and affordability of these instruments could enhance the current GNSS receiver global network for atmospheric monitoring purposes. However, the quality of the measurements gathered from smartphones have not yet been fully assessed. In this paper, an analysis of the quality of smartphone-based Total Electron Content (TEC) measurements is performed. The primary focus of this work is to provide a general analysis on the potential of using smartphone observations for ionospheric sciences. Dual-frequency phase observations are used to measure the relative TEC. For this experiment, GPS L1/L5 and Galileo E1/E5a observations acquired with the Xiaomi Mi8 and Huawei Mate20 X smartphones were considered. Both devices are equipped with the Broadcom BCM47755 chipset, which enables GNSS dual-frequency measurements. More than 100 hours of phase observations at mid-latitude during a low solar activity period were gathered. Three different setup configurations were defined to assess the effects multipath or signal strength may have in the quality of the phase observations. In addition, to detect and discard unrealistic fluctuating phase observations, a quality-check was performed. In the results, good agreement between the slant TEC (sTEC) measurements from the smartphone and the sTEC obtained from a co-located geodetic receiver is presented. Furthermore, the amount and quality of observations discarded by the quality-check are reported, which emphasizes the use of the signal strength to indicate the quality of phase observations. The results indicate that the /0 and multipath are important - when gathering the data from a geodetic antenna, around 80% of the collected data passed a quality threshold. However, collecting data with the addition of an attenuator, or directly from the smartphone antenna, reduced the valid data to below 50%. However, given the ease of use of a smartphone for data collection, even at 50% of data being usable, this shows potential as a useful course of TEC for ionospheric observations

    Analytical volume model for optimized spatial radar bat detection in onshore wind parks.

    Get PDF
    To develop mitigation measures for the protection of bats in close proximity to onshore wind turbines, new detection techniques covering large-scale environments and techniques, which are able to track individuals are required. Radar based observations, successfully applied in ornithological studies, offer a promising potential, but come with challenges regarding the comparability of measurements and noise interference (ground clutter) from objects within detection range. This paper presents improvements of a commercially available inexpensive pulse radar for 3D spatial detection of bat-sized objects in onshore wind parks. A new analytical spatial detection volume model is presented incorporating calibrated radar data and landscape parameters such as clutter. Computer simulation programs to process the analytical spatial detection volume model were developed. For model calibration, the minimum signal power of the radar was experimentally determined with the radar cross section (RCS) of an artificial bat (similar to Nyctalus noctula), resulting in a maximum detection range of 800 m and a corresponding RCS of 12.7 cm². Additionally, the spatial volume for radar detection was optimized with a clutter shielding fence (CSF). Adjusting the volume model by incorporating a theoretical model of the CSF, an extension of the detection volume by a factor of 2.5 was achieved, while the total volume of a 105° horizontal angular radar image section yields 0.0105 km³. Extrapolation and comparison with state-of-the-art acoustic bat detection result in a 270 times larger volume, confirming the large-scale detection capabilities of the pulse radar
    corecore