86 research outputs found

    Numerical Evaluation of Shot Noise using Real Time Simulations

    Full text link
    We present a method to determine the shot noise in quantum systems from knowledge of their time evolution - the latter being obtained using numerical simulation techniques. While our ultimate goal is the study of interacting systems, the main issues for the numerical determination of the noise do not depend on the interactions. To discuss them, we concentrate on the single resonant level model, which consists in a single impurity attached to non-interacting leads, with spinless fermions. We use exact diagonalisations (ED) to obtain time evolution, and are able to use known analytic results as benchmarks. We obtain a complete characterization of finite size effects at zero frequency, where we find that the finite size corrections scale G2\propto G^2, GG the differential conductance. We also discuss finite frequency noise, as well as the effects of damping in the leads.Comment: 6 pages, 7 figure

    Shot noise in the self-dual Interacting Resonant Level Model

    Full text link
    By using two independent and complementary approaches, we compute exactly the shot noise in an out-of-equilibrium interacting impurity model, the Interacting Resonant Level model at its self-dual point. An analytical approach based on the Thermodynamical Bethe Ansatz allows to obtain the density matrix in the presence of a bias voltage, which in turn allows for the computation of any observable. A time-dependent Density Matrix Renormalization Group technique, that has proven to yield the correct result for a free model (the Resonant Level Model) is shown to be in perfect agreement with the former method.Comment: 4 pages, 3 figure

    Nonequilibrium electron transport using the density matrix renormalization group

    Full text link
    We extended the Density Matrix Renormalization Group method to study the real time dynamics of interacting one dimensional spinless Fermi systems by applying the full time evolution operator to an initial state. As an example we describe the propagation of a density excitation in an interacting clean system and the transport through an interacting nano structure

    Numerical estimation of critical parameters using the Bond entropy

    Get PDF
    Using a model of spinless fermions in a lattice with nearest neighbor and next-nearest neighbor interaction we show that the entropy of the reduced two site density matrix (the bond entropy) can be used as an extremely accurate and easy to calculate numerical indicator for the critical parameters of the quantum phase transition when the basic ordering pattern has a two-site periodicity. The actual behavior of the bond entropy depends on the particular characteristics of the transition under study. For the Kosterlitz-Thouless type phase transition from a Luttinger liquid phase to a charge density wave state the bond entropy has a local maximum while in the transition from the Luttinger liquid to the phase separated state the derivative of the bond entropy has a divergence due to the cancelation of the third eigenvalue of the two-site reduced density matrix.Comment: Accepted for publication in Physical Review

    Tracking spin and charge with spectroscopy in spin-polarised 1D systems

    Full text link
    We calculate the spectral function of a one-dimensional strongly interacting chain of fermions, where the response can be well understood in terms of spinon and holon excitations. Upon increasing the spin imbalance between the spin species, we observe the single-electron response of the fully polarised system to emanate from the holon peak while the spinon response vanishes. For experimental setups that probe one-dimensional properties, we propose this method as an additional generic tool to aid the identification of spectral structures, e.g. in ARPES measurements. We show that this applies even to trapped systems having cold atomic gas experiments in mind.Comment: 5 pages, 4 figure

    Length-dependent oscillations of the conductance through atomic chains: The importance of electronic correlations

    Full text link
    We calculate the conductance of atomic chains as a function of their length. Using the Density Matrix Renormalization Group algorithm for a many-body model which takes into account electron-electron interactions and the shape of the contacts between the chain and the leads, we show that length-dependent oscillations of the conductance whose period depends on the electron density in the chain can result from electron-electron scattering alone. The amplitude of these oscillations can increase with the length of the chain, in contrast to the result from approaches which neglect the interactions.Comment: 7 pages, 4 figure

    A Hartree-Fock Study of Persistent Currents in Disordered Rings

    Full text link
    For a system of spinless fermions in a disordered mesoscopic ring, interactions can give rise to an enhancement of the persistent current by orders of magnitude. The increase in the current is associated with a charge reorganization of the ground state. The interaction strength for which this reorganization takes place is sample-dependent and the log-averages over the ensemble are not representative. In this paper we demonstrate that the Hartree-Fock method closely reproduces results obtained by exact diagonalization. For spinless fermions subject to a short-range Coulomb repulsion U we show that due to charge reorganization the derivative of the persistent current is a discontinuous function of U. Having established that the Hartree-Fock method works well in one dimension, we present corresponding results for persistent currents in two coupled chains.Comment: 4 pages, 6 figures, Submitted to Phys. Rev.

    Anderson Localization and Polarization

    Full text link
    Effects of randomness have supplied fundamental problems in condensed matter physics and localization due to interference of quantum mechanical electrons are well studied as the Anderson localization. Although we have well established understanding of the localization of non-interacting electrons, information of the correlated electrons with randomness is still missing. It was mainly due to lack of reliable numerical techniques for the correlated electrons. For the one dimensional correlated systems without randomness, lots of numerical results are collected by the Density Matrix Renormalization Group (DMRG) method and consistent understanding with analytical predictions has been achieved. In this paper, we plan to apply DMRG for the random electron systems by calculating direct responses of the system with electric field. At first, random systems without interaction are carefully investigated. Then we try to treat both of interaction and randomness in one dimensional systems

    Interplay disorder-interaction in one dimensional quantum models

    Get PDF
    URL: http://www-spht.cea.fr/articles/S98/116 Compétition entre le désordre et les interactions dans des modèles quantiques unidimensionnels 210th WE-Heraeus Seminar (PILS'98), Berlin, Germany, October 6-9, 1998We show that the crossover from the weak interaction limit towards the strong interaction limit may be accompanied by a delocalization effect in one dimensional disordered quantum models. The spin degrees of freedom are frozen and the spatial wave functions remain symmetric or antisymmetric when the strength UU of a short range interaction is varied. The study concerns the excited states for two interacting particles and the ground state for a finite density of carriers. First, for two particles in a chain of length LL, we establish a duality transformation mapping the behavior at weak UU onto the behavior at strong UU. For intermediate UU, the mixing of the one body states and the interaction induced delocalization effect are maximum. Furthermore, if LL1L \approx L_1 (the one particle localization length), the system becomes weakly chaotic with critical spectral statistics. This weak chaos is related to the multifractality of the interaction matrix. For two particles starting close to each other, localization is reached in two steps. Before the time t1t_1 necessary to propagate over L1L_1, UU de-favors the propagation. On the contrary, UU favors a very slow delocalization after t1t_1, characterized by a log(t)\log(t) spreading of the center of mass. Similarly, the curvatures of the energy levels with respect to an enclosed magnetic flux decrease as a function of UU for LL1LL_1. The changes of the curvatures can be described by a conductance-like single scaling parameter. Second, using the density renormalization group algorithm, we have studied the ground state energy of a finite density of spinless fermions and its change under twisted boundary conditions. For a large disorder, a charge reorganization is induced by the interaction: When the system becomes instable between the inhomogeneous configuration driven by the random potential (Anderson insulator) and the homogeneous one driven by repulsive interactions (Mott insulator), the ground state sensitivity can be enhanced by orders of magnitude. In contrast, no enhancement occurs at weaker disorder, when there are many particles on a scale L1L_1. ----- Cet article est une revue des résultats obtenus récemment par les auteurs sur le rôle joué par l'interaction dans des systèmes unidimensionnels désordonnés. La première partie de l'article traite le problème de deux particules en interaction dans un potentiel aléatoire. On montre que les deux particules peuvent se propager de façon cohérente sur une distance L2L_2 beaucoup plus grande que la longueur de localisation L1L_1 d'une particule sans interaction. L'effet de délocalisation maximale se manifeste pour une valeur de l'interaction UU intermédiaire entre les deux limites U=0U=0 et UU\to\infty et une transformation de dualité permet de passer d'une limite à l'autre. La structure multifractale des termes d'interaction de l'hamiltonien dans la base des états sans interaction influence la relation entre L2L_2 et L1L_1 et empêche la transition, engendrée par l'interaction, à un régime complètement chaotique. En changeant UU on parvient à un régime de ``chaos faible'', caractérisé par une statistique spectrale critique intermédiaire entre la statistique de Poisson (systèmes intégrables) et de Wigner (systèmes ergodiques). On montre que l'interaction est favorable au transport quand la longueur de localisation L1L_1 est plus petite que la taille LL du système et au contraire est défavorable quand L1>LL_1>L. Ceci est montré dans l'étude de la dynamique d'une paire de particules et de la courbure des niveaux énergétiques pour une boucle traversée par un flux d'Aharonov--Bohm. La deuxième partie de l'article étudie les propriétés de l'état fondamental d'un système de fermions sans spin. Des effets importants de délocalisation se manifestent quand le système devient instable entre les configurations limites U=0U=0 (isolant d'Anderson) et UU\to\infty (isolant de Mott). La réorganisation des charges d'une limite à l'autre s'accompagne d'une grande sensibilité de l'énergie de l'état fondamental quand les conditions de bord de périodiques deviennent antipériodiques. L'article montre que l'effet de délocalisation semble persister à la limite thermodynamique. \hfill{G. Benenti

    Do interactions increase or reduce the conductance of disordered electrons? It depends!

    Get PDF
    We investigate the influence of electron-electron interactions on the conductance of two-dimensional disordered spinless electrons. By using an efficient numerical method which is based on exact diagonalization in a truncated basis of Hartree-Fock states we are able to determine the exact low-energy properties of comparatively large systems in the diffusive as well as in the localized regimes. We find that weak interactions increase the d.c. conductance in the localized regime while they decrease the d.c. conductance in the diffusive regime. Strong interactions always decrease the conductance. We also study the localization of single-particle excitations close to the Fermi energy which turns out to be only weakly influenced by the interactions.Comment: final version as publsihed, 4 pages REVTEX, 6 EPS figures include
    corecore