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Abstract. We show that the crossover from the weak interaction limit towards the strong
interaction limit may be accompanied by a delocalization effect in one dimensional disordered
quantum models. The spin degrees of freedom are frozen and the spatial wave functions
remain symmetric or antisymmetric when the strength U of a short range interaction is
varied. The study concerns the excited states for two interacting particles and the ground
state for a finite density of carriers.

First, for two particles in a chain of length L, we establish a duality transformation mapping
the behavior at weak U onto the behavior at strong U. For intermediate U, the mixing of the
one body states and the interaction induced delocalization effect are maximum. Furthermore,
if L & Ly (the one particle localization length), the system becomes weakly chaotic with
critical spectral statistics. This weak chaos is related to the multifractality of the interaction
matrix. For two particles starting close to each other, localization is reached in two steps.
Before the time #; necessary to propagate over Li, U de-favors the propagation. On the
contrary, U favors a very slow delocalization after £, characterized by a log(t) spreading of
the center of mass. Similarly, the curvatures of the energy levels with respect to an enclosed
magnetic flux decrease as a function of U for L. < L; and increase for L > L;. The changes
of the curvatures can be described by a conductance-like single scaling parameter.

Second, using the density renormalization group algorithm, we have studied the ground
state energy of a finite density of spinless fermions and its change under twisted boundary
conditions. For a large disorder, a charge reorganization is induced by the interaction: When
the system becomes instable between the inhomogeneous configuration driven by the random
potential (Anderson insulator) and the homogeneous one driven by repulsive interactions
(Mott insulator), the ground state sensitivity can be enhanced by orders of magnitude. In
contrast, no enhancement occurs at weaker disorder, when there are many particles on a
scale 1.

Keywords: Interaction, Disordered systems, Delocalization

The competition between electron-electron interaction and one body kinetic energy
in disordered systems is a fundamental problem of permanent interest [1]. We denote
by U,t and W the parameters characterizing the interaction, the one body kinetic
energy and the fluctuations of the random potential for a d-dimensional system of size



L. When U is small, the N-body eigenstates are close to the symmetrized products of
one body states (Slater determinants for spinless fermions) which contain the effects
of t and W completely. The effect of U can be treated as a perturbation, yielding a
mixing of those symmetrized products. When U increases, the consequence of this
mixing is that an increasing number of one body states is needed to describe the exact
N-body states. If the one body states are localized by the disorder, delocalization in
real space results from this mixing. This is why the interaction can induce in certain
cases metallic behavior in a system which would be an insulator otherwise. When
U is large and dominates, one can get on the contrary a correlated insulator which
might be metallic at weaker interaction. A Wigner crystal pinned by disorder is a
good example of such an interaction-induced insulator.

For one dimensional disordered quantum systems, we show that the crossover from
the weak interaction limit towards the strong interaction limit is accompanied by a
delocalization effect in two cases: two electrons of high energy with opposite spins
(the orbital part of the wave-function is symmetric as in the case of two bosons) and
the ground state of spinless fermions at half filling.

1 Two interacting particles

We summarize in this section the main conclusions of a series of recent works [2, 3, 4, 5]
dealing with two interacting particles (TTP) described by a tight-binding Hamiltonian

H=H®14+1® Hy + Hint . (1)

H describes one particle in a disordered chain with L sites and reads

L

Hi=Y (—t|n+1><n|—t*|n><n+1|+Vn|“><”|)’ (2)

n=1

where |n) is a Wannier function localized at site n. In the case of periodic boundary
conditions the chain is closed to a ring, setting |n) = |[n+ L). The disorder is modeled
by random on-site energies V,, which are distributed uniformly inside the interval
[-W : W]. The nearest neighbor hopping matrix elements ¢ = tq = 1 set the energy
scale.

We assume Hubbard-like on-site interaction with strength U between the two particles
given by

Hin = Z Ulnn)(nn|. (3)

Here, |mn) means |m) @ |n). We restrict ourselves to the case of two fermions with
opposite spins. We have only to consider symmetric “boson-like” TIP states and the
dimension of the Hilbert space is M = L(L+1)/2. A complete basis for the symmetric
configuration space part of the states is given by

1
|mn), = —=(|mn) 4+ |nm)) for m#n and |nn), = |nn). (4)
\/5 /
For the main sub-band of states centered around F = 0, both in the limits where U = 0
(free bosons) and U = oo (hard-core bosons), the two body states can be described
in terms of two one body states. We use a duality transformation U — at?/U to map



the small U-limit onto the large U-limit (a & v/24). We first prove that the lifetimes
of the free boson states and of the hard-core boson states are equal at the fixed point
U. of the duality transformation. At U. one has the maximum mixing of the one body
states by the interaction and the enhancement factor [6, 7, 8] is maximum for the two
particle localization length Ls. Far from U., Ly is smaller and satisfies the duality
relation. Ly — Ly (the one particle localization length) both for U — 0 and U — oc.
The study of the signature of this duality transformation on the spectral fluctuations is
very interesting. For E = 0, taking . = L; and increasing U, one gets two thresholds
defining a range of interaction Ur < U < Upg. Outside this range, the levels are almost
uncorrelated. Inside this range, the level repulsion is maximum, but does not reach
the universal Wigner-Dyson (W-D) repulsion. The two particle system is not fully
chaotic, but exhibits a weak chaos which is not arbitrarily situated between Poisson
(integrable) and Wigner (chaos). The spacing distribution p(s) between consecutive
energy levels and the statistics Xo(E) (variance of the number of energy levels inside
an energy interval E) are characteristic of the third known universality class [9]. One
finds p(s) & 4sexp(—2s) and T5(F) ~ 0.1640.41 F for periodic boundary conditions.
This is very close, if not identical, to the distributions found in many “critical” one
body systems, such as an electron in a 3d random potential at the mobility edge
or in certain pseudo-integrable quantum billiards. Furthermore, p(s) saturates to
4sexp(—2s) for U ~ U. only when the ratio 1 < Li/L < 10. We conclude that a
local interaction can never drive the two particle system to full quantum chaos with
Wigner-Dyson statistics in one dimension, but can at most yield weak critical chaos
in a certain domain of interaction and of the ratios Li/L. We show in addition that
this weak chaos is accompanied by multifractal wave-functions.

While one-particle wave-functions in two dimensions have a multifractal character
within their localization domains [10], the elastic mean free path and the localization
length coincide in one dimension, preventing a single one particle wave function to be
multifractal over a significant range of scales. When one writes the two-particle Hamil-
tonian in the basis built from the one particle states (eigenbasis without interaction),
the interaction matrix elements coupling a free boson state to the others have not
only a broad and non Gaussian [11] distribution, but defines a multifractal measure
in the free boson eigenbasis, which is at the origin of critical statistics and multifractal
wave-functions. Moreover, since the obtained Rényi dimensions do not depend on Ly,
simple power laws describe how the moments scale with the characteristic length L,
of the one body problem. For a size I ~ L1, we show that, contrary to previous
assumptions, the two body eigenstates without interaction directly coupled by the
square of the hopping terms have not a density of the order of the two body density
p2(L1) o< L%, but a smaller density p§T(L1) o L{(a(qzz)) with f(a(g = 2)) = 1.75.
The properties of the two body problem in one dimension have interesting conse-
quences for the mobility of the particles. This can be observed in the real-time
development of wave packets representing two particles initially being localized in
two neighboring sites in the middle of a disordered chain of size L > L;. The TIP-
dynamics is characterized by two times ¢; and ¢4, where a scale of order of L; and L is
explored, respectively. Between ¢; and 5, the spreading of the center of mass spreads
with an extremely slow log(¢)-law, quite different from a previously assumed diffusion
law. This is consistent with the absence of full quantum chaos with Wigner-Dyson
spectral statistics. Another important phenomenon illustrated by this study is the
inversion of the effect of the interaction when the ballistic motion (t < tl) becomes



sub-diffusive (t1 <t< tQ): First U de-favors the ballistic propagation before having
an opposite delocalizing effect.

This is directly related to the behavior of the level curvatures with respect to an
enclosed flux in ring geometries. Since the latter are known to be closely related
[12, 13] to the conductance in the case of one-particle energy levels in disordered
mesoscopic systems, one can suspect that they are a measure of the mobility of the
particles also in the interacting two body case. Very recently, Akkermans and Pichard
[14] have studied the connection between spectral correlations and level curvatures
for two interacting particles. They predicted that the curvatures should be enhanced
by interactions in localized and reduced in metallic samples. In a numerical study, we
have unambiguously confirmed this prediction. Furthermore, our data suggest that
the effect of the interaction on curvatures exhibits one-parameter scaling. The scaling
parameter is closely related to the non-interacting conductance.

1.1 Duality small U « large U

Denoting |a) the one body eigenstate of energy ¢, and the amplitude (n|a) = ¥, (n),
only two one body states |a) and |3) are necessary to describe a free boson state
|fb) = |afB) with components

(il fb) = (o (n2)Ws (my) + W (m1) W5 (n2))/V/2. (5)

In this free boson basis, the interaction matrix elements (a 8| Hint |yd) = QUQZ‘; where

L
Q15 =D Wa(n)¥s(n) Ty (n) U5 (n). (6)
n=1

As noticed in Ref. [15], there is a useful representation for an on-site interaction
U — 00, composed by a small set of Ly = L “molecular” states [nn) and by a large
set of Ly = L(L — 1)/2 hard core boson states |hc¢) built from re-symmetrized Slater
determinants with components

(ninslhe) = (Uo(no)¥s(ni) — ¥o(n)¥s(ns))sgn(ng — nl)/\/i (7

The re-symmetrization is insured by the function sgn(z) := z/|z|. For hard wall
boundaries, the same one body states |a) and |3) are used for |fb) and |Ac). In this
basis, the two body Hamiltonian # has the structure

=[] ®

Hwy and Hyp are Lyt X Ly and Ly x Ly diagonal matrices with entries U + 2V, and
€he = €o + €3, respectively. Hyr and Hy are coupled by a rectangular matrix Hc

resulting from the kinetic terms /21 Zﬁ;llﬂn, n+1)(n,n|+|n,n)(n,n+ 1|+ h.c.) of
H. The matrix elements of H¢ are equal to V21t (‘Ilg(n)D\Ila(n) — \Ila(n)[)‘llg(n)),
where D\Ila(n) = Wy(n+ 1) — ¥,(n — 1). The states |hc) of energy €. ~ 0 are
coupled by a term of order t to the few states |nn) of energy ~ U. Their lifetime
becomes infinite when U — +oo.



Projecting an eigenstate |A) of energy F4 onto the states |nn) and |hc)

LM LH
|4y = chlnn)+ Y cli’|he), 9)
n=1 he=1
one finds the relation
HM+JM(EA) 0 C}XI —F C}XI
0 Hu+Ju(Ea) | [ CF | =74 o |

which holds for arbitrary U. C'% and C’E are vectors of Ly components ¢’} and Ly
components c¢, respectively. The matrix Ju(E4) has L% elements of the form

he|He|nn)(nn|H he
Ju(Ea, he, he) = Z< |ch|sz |Ef| ). (10)

Considering the main sub-band of states with energy E4 = 0, resulting from the
mixing by a perturbation of order ?/U of a few states |he) for which Ju(E4) can
be qlmphﬁed Assuming Wt € U and U + 2V,, — Ea & U, one has to evaluate
Z (h(‘|Hc|nn><nn|Hc|h('> This expression is composed of 12 sums over n, each
of them having the form

aﬁ—Z‘I’ )W, (n)¥s(n") (11)

with various combinations of n’,n" = n & 1. Therefore QZ‘; is not exactly equal to

the Qléﬁ occuring around the free boson limit. However, this difference should not be
statistically relevant and if one neglects it, one finds

. +2
Ju(Ea, he, he) & 12(24)1/25@‘;. (12)

This establishes the duality transformation U — a(t?/U) for E ~ 0 which maps
the distribution of the coupling terms between the |fb) when U is small onto the
distribution of the coupling terms between the |hc) when U is large. The constant
a =+/24 if one has U 4+ 2V,, — E4 ~ U for every V,.

To illustrate this duality around the fixed point U, = (24)1/4t, we have numerically
calculated the average over the disorder of the local density of states

palE) = S I PO(E + Ba = co - ) (13)
afB

for L = L1 and F4 = 0. We have observed that (p4 (F)) can be fitted by a Lorentzian
curve of width Iy (if 8 denotes the states | fb)) or I's, (if a3 denotes the states |hc)).
The dependence of 'y and 'y, on the interaction strength will be shown in Fig. 2.
In order to quantitatively understand the broadening of the states due to the interac-
tion, it is very helpful to study in detail the properties of the matrix () which depend
on the one-body dynamics in the random potential.



1.2 Multifractality of the interaction matrix and weak critical quantum
chaos

In the free boson eigenbasis, the system Hamiltonian is made of a diagonal matrix with
essentially uncorrelated entries €, + €5 plus a perturbation induced by the interaction
and coupling the free boson states. If this perturbation was essentially an unstruc-
tured Gaussian matrix, the problem would consist of a Poisson diagonal matrix plus
a GOE perturbation. In such a case, the perturbation would drive the system to full
quantum chaos with GOE Wigner-Dyson spectral statistics. We will show that this is
not the case. The most rigid spectrum that the interaction can induce exhibits critical
statistics as the one particle problem at the mobility edge (where the eigenfunctions
are known to be multifractal) or as in certain pseudo-integrable billiards. This means
that the perturbation cannot be simplified by a GOE matrix in the free boson eigen-
basis, but should have a more complex structure yielding critical statistics, and not
GOE Wigner Dyson spectral rigidity. This is why we should first study the @Q-matrix.
We summarize a few evaluations of the second moment (¢ = 2) of Ql‘; which have been
previously used. Case (i): The one body Hamiltonian is described by random matrix
theory (RMT). The statistical invariance under orthogonal transformations O(M)
implies that <(Q1%)2> ~ 1/M?3 where M is the number of one body states. Case (ii):
The system is a disordered conductor of conductance g. An estimate [16] based on
perturbation theory gives <(UQ1‘;)2> o (A/g)?. Since the one particle mean level
spacing A o« 1/M, this perturbative result coincides with the previous RMT results
if one takes M = g2. Moreover, it is valid only if all the one particle states appearinég
in Eq.(6) are taken from a sequence of g consecutive levels in energy. Otherwise, lﬁ
can be neglected. Case (iii): The system is a disordered insulator. Shepelyansky [6] in
his first study of the two interacting particles (TTP), assumes a RMT behavior for the
M = L{ components of the wave function inside the localization domain, and neglects
the exponentially small components outside this domain. When the dimension d = 1,
one gets a term (Ql‘;)z ~ 1/13 for the terms coupling a TIP state |af > to L?
TIP states |[yd >. This estimate for g < 1 differs from the one valid when g > 1
under two important aspects: not only M ~s L¢ instead of g2, but the condition for
a large hopping is entirely different. In the insulator, a large hopping term is not
given by four one particle states close in energy, but by four states close in real space,
i.e. located inside the same localization domain. Ponomarev and Silvestrov have
criticized [15] this estimate, using an approximate description of a localized state for
weak disorder. They note that the density of TTP states coupled by the interaction
is sensibly smaller.

For a more accurate study of QZJ in one dimension, we numerically calculated the
matrix elements using Eq.(6) and numerical diagonalization of the one particle Hamil-
tonian. Q?f, for fixed a and 3 is a two-dimensional object which is not defined in
the real 2d space, but in the space of two one particle quantum numbers 4 and 4.
Those states |y > (and |§ >) can be ordered in different ways: (a) spectral ordering
by increasing eigenenergy, (b) spatial ordering by the location n, of their maximum
amplitude, (c) momentum ordering if W = 0. The ordering (b) is meaningful only in
the localized regime (L > Lq).

We first study the matrix element QZ‘Z%, characterizing two electrons in the same
state |ag > hopping to an arbitrary state |v§ >. Hopping is very unlikely over scales
larger than L;. The L? large values of the hopping term are concentrated inside
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Fig. 1: Left: Power laws showing the relevance of a multifractal measure in the (v, ) two
dimensional plane. [q(D) are calculated for a single sample with L, = L = 2500. ag in the
bulk of the spectrum. The states |y) and §) are ordered by increasing eigenenergy (ordering
a). The dashed line corresponds to the RMT prediction (case (i)). Right: d(g) with ap in
the bulk of the spectrum using ordering (a) and after ensemble averaging. Filled symbols:
L = 240 and L; = oo (diamonds), 25.10* (circles) and 2500 (squares). Open symbols:
L, =70 and L = 960 (diamonds), 480 (circles) and 240 (squares). Inset: the slope A(L1)
showing that d(q) is disorder independent for ¢ < 3 and L, < L.

a square of size L? [2] for a given sample using ordering (b). Inside this square,
a complex pattern occurs which reminds us another bi-dimensional object: the one
particle wave function in a two dimensional disordered lattice. In analogy with the 2d
one body problem, we now perform an analysis of the multifractality, not expecting
that this multifractality will be valid in the whole (7, d) Hilbert space, but only in a
limited but parametrically large domain.

We proceed as usual (see references [17, 18]) for the multifractal analysis. For L; and
L fixed, we divide the plane (v, 4) into Npox = (L/D)? boxes of size D and calculate
the ensemble averaged function for different values of ¢

Nox

Loy=>"1 > 1Q¥.l] - (14)

i=1 v¥,0€box i

The existence of a multifractal measure defined in the (v, d)-plane by the interaction
matrix elements is established in the next figures. In Fig.1, a single sample has been
used and power laws I, (D) D7(@ are obtained over many orders of magnitude for
different values of q. The corresponding Rényi dimensions d(q) = 7(q)/(¢ — 1) are
shown in Fig. 1 for different L and L;, using ordering (a) and ensemble averaging.

For an infinite Ly (no disorder), the eigenstates are plane waves of momentum k, and
QZ‘; # 0 only if ko + kg — ky — ks = 0. This gives d(0) = 2 and d(¢ > 0) = 1 with
ordering (c). The dimensions calculated with ordering (a) are close to this limit. For
a finite L1, d(q) goes from the clean limit (L << L1) to an Lji-independent regime
when L >> L;. In the crossover regime (I < L1) the d(q) depend on L;. In the
limit Z >> Ly, the d(q) (using orderings (a) or (b)) do not depend on L and L;. For



0<¢q<3, d(g) ~2— Ag with aslope A a2 0.135. The Li-independence of A is shown
in the inset of Fig. 1 for Ly < L up to L; = 600.
A multifractal distribution has scaling behavior described by the f(«)-spectrum, given

by the relations ;
ofg) = g and J(a(0) = a(0) g~ 7(0). (15)

We obtain f(a(q)) ~ 2 — Ag? for ¢ < 3, i.e. a parabolic shape f(a) = 2 — (o —
2 — A)?/(4A) around the maximum 2 4+ A. We have mainly studied the first positive
moments, since we are mainly interested by f(a(q = 2)). Indeed, when one uses Fermi
golden rule to calculate the interaction-induced decay of a non-interacting state, one
needs to know the density of states directly coupled by the second moment (¢ = 2)
of the hopping term. The fractal dimension of the support of this density is given
by f(a(g = 2)). For greater values of ¢, there are deviations around the parabolic
approximation, indicating deviations around simple log-normal distributions. From a
study of the large and small values of [Q}°,, |, one can obtain d(g — £o0). We find
d(+00) = 1.33 and d(—o0) = 3.15, giving the limits of the support of f(a).

We have also checked that our results for Q?X‘Zao do not depend on the chosen «g
and studied the general case where |a@ > and |3 > are not the same [2]. Using
energy ordering (a) and imposing an energy separation |e, — €3] > A(Ly) in order
to have a good overlap between the fixed states a and 3, we find also power law
behaviors for I,(D). The corresponding dimensions d(g) are characterized by a slope
Ala # B) ~ A(a = B)/2 ~ 0.065. Therefore, the multifractal character of Ql‘; is less
pronounced when |a ># |8 >, but remains relevant.

As pointed out by Shepelyansky, the interaction induced hopping mixes nearby in
energy TIP states |af >. The decay width T [8, 19, 20] of a TIP state |a3 >, built
out from two one particle states localized within L, can be estimated using Fermi’s
golden rule. If one assumes RMT wave functions inside I; for the one particle states,
(case (iii)) the Ql‘; ~ xU - L1_3/2 couple the TIP state |8 > to all the TIP states

|yd > inside Lq. Around the band center, they have a density pa(L1) L? and Fermi
golden rule gives
U? U?
NE~O0 —p2(L1) = —. 16

( )(XL?PZ( =1 (16)
However, not all the TIP states within the localization domains are equally coupled
by the interaction. Since the square of the hopping terms appears in the golden rule,
our multifractal analysis gives a reduced effective TIP density p§T o L{(a(q=2)) which
should replace the total TTP density pa(L1). The resulting expression

2 .
U_Lf(a(quz)) (]7)

Fop x
o L:f 1

agrees with the direct numerical evaluation
§ 12
Tup = U22|Qlﬁ|?§(ea+€5 — €y — €5) (18)
7

of the Golden rule decay [2] when L > L.
For L & Ly, one has p§(L1) o< L1:7®, instead of the total two body density ps o L%.
Therewith, Fermi’s golden rule gives for the widths I'y and T', in the free boson and
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Fig. 2: Left: I'o (open symbols) and I'e (filled symbols) for L = 25 (triangles), L = 76
(diamonds), L = 150 (squares) and L = 200 (circles). Dashed (dotted) lines are the Fermi
golden rule expression of Eq.19. Right: TIP-p(s) for L = L; = 150 and U = 1: Continuous,
dotted and dashed lines correspond to the “Semi-Poisson”, Wigner and Poisson distributions
respectively. Full (empty) circles correspond to hard-wall (periodic) boundary conditions.
Inset: TIP-p(s) (circles U = 1) compared to the one particle p(s) (squares) for L = L; = 150.

the hard core boson bases, at L &~ Ly

1 24t* 1
Iy~ ZWUQFpSH(Ll) and T ~ 27 e Fpgﬂ([q) . (19)
1 1

As shown in figure 2, the widths T obey the duality property To(U) = T, (v/24t%/U),
and are described by the above golden rule approximations. When U & U,, the
lifetime of the free boson states is equal to the one of the hard core boson states.
Signatures of this duality have been observed in the level statistics (see Fig. 4 of
Ref. [19]) and in a study of the pair localization length L, [21]. However, deviations
from a = /24 occurred. This might be due to rather small values of L; and thus
a relatively large number L of molecular states as compared to the total number of
states ~ LL; feeling the interaction.

When U increases, the statistical ensemble associated to the two particle system
exhibits a crossover from one preferential basis (the free boson basis) to another
preferential basis (the hard core boson basis). At Ue, the statistical ensemble is in
the middle between the two preferential bases, the mixing of the one body states is
maximum, and the localization length Ly therefore is maximum. When F = 0 and
U varies, a transition occurs in the two body spectrum in 1d which is somewhat
reminiscent of the one body case in 3d when EF = 0 and W varies and the question
whether or not the spectral fluctuations are of the same kind in the vicinity of the
threshold deserves to be investigated.

Before showing the results, two arguments can be mentioned: (i) A multifractal Q-
matrix is incompatible with Wigner-Dyson level repulsion in 1d. The states |fb) or
|he) are directly coupled by U or #2/U to an effective density p§T < pa. Therefore,
nearest neighbors in energy are very likely uncorrelated, enhancing the probability to
find level spacings small compared to their average. (ii) Looking at Eq. 3, one may



assume that a broad distribution of the matrix elements of Hy may yield a single
dominant coupling term. This allows us to consider that the states |hc) are mainly
coupled via a few states |nn). This is not far from the case discussed by Bohr and
Mottelson [22] (coupling via a single state) where the consecutive levels £ 4 of H satisfy
the conditions ¢p, < Ea < €heq1 < Eag1, €ne being the consecutive levels of Hy.
Since the statistics of Hy is essentially Poissonian, this forbids to have the Wigner-
Dyson rigidity for the £ 4. The most rigid spectrum would be achieved by putting
the F 4 exactly in the middle of two consecutive ¢j.. It is straightforward to find that
p(s) would then be equal to p.(s) = 4sexp(—2s). This “semi-Poisson” distribution,
where p.(s) o s for s < 1 (as the Wigner surmise pw(s) = (7/2)s exp(—ms?/4)), and
which decays as exp(—s) for s > 1 (as the Poisson distribution pp(s)), characterizes
weak chaos in critical systems [23].

These observations lead us to study p(s) as a function of U and of the ratio L;/L
around £ = 0 [3]. For U = 1 and L = L, = 150, the spacing distribution p(s) is
shown in Fig. 2, in good agreement with the “semi-Poisson” distribution. In the inset,
one can see that this is specific to the two particle problem, and does not characterize
the single particle spectrum for the same chain of size L.

We now study the domain of validity for weak chaos and universal critical statistics.
To measure the deviation of p(s) from the Pp(s) or Pw(s), we use the functional

J ds(p(s) — pw (s))
U) = >
(R T N S——

with b = 0.4729. A Poisson spectrum gives n = 1, a Wigner-Dyson spectrum gives

(20)

n = 0 and “semi-Poisson” corresponds to 1. & 0.386.

First, we vary U, imposing the relation . = L. We assume L1 to be given by the weak
disorder formula L; & 25/W?2. In the limits U — 0 and U — oo, the TIP-levels are
given by ¢, = €p. = € + ¢g which are uncorrelated (at least on energy scales smaller
than the one particle level spacing Ay). This gives pp(s) for the TTP-spectrum. One
can see in fig. 3 that p(s) deviates for small U and ¢? /U from pp(s) observed at U = 0
and U = oco. n(U) exhibits a plateau (Ur < U < Un) at the value . ~ 0.386 which
characterizes p.(s)). We suggest that Ur and Uy are given by the conditions which
hold [20] for systems in which there is no coupling term between consecutive energy
levels. In agreement with the general picture developed in Ref. [20] (see also Ref. [24]),
the threshold appears when the strength of the coupling terms becomes of the order
of the spacing 1/p5f of the directly coupled levels. This gives QI'JF/L:I’/2 A 4t)LETE
and 2v/241% /(Un I',:f/:z) A 4t/ L1 respectively, and seems to account for the size of
the plateau of the curve n(U). This favors a line of critical points rather than an
isolated point when the condition L = Ly is imposed. A study of the spectral rigidity
¥, leads to the same conclusions [3].

At fixed interaction strength U = 1.25 which yields the maximum mixing, one finds
the critical statistics for 1 < Ly/L < 10 [3]. The critical correlations are suppressed
both in the clean limit L <« L; and in the localized limit L > L;. The critical
statistics is accompanied by multifractal two body wave-functions [3].

1.3 Real-time development of wave-packets

In order to understand the relevance of the above results for the two-particle dy-
namics, it is very instructive to consider the real-time dynamics of wave-packets in
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Fig. 3: Weak chaos and interaction for L = Li: Crosses, pluses and stars represent n(U)
for 1. =100, I, = 150 and . = 200, respectively.

large systems [4] (when the system size L is much larger than both, L; and the pair
localization length L, finite size effects can be neglected).

This illustrates the TIP delocalization phenomenon when ¢+ — co. To study in detail
the time dependence of the size of the wave-packet yields interesting additional infor-
mations about the quantum motion. First, a ballistic regime (¢ < #1) appears in which
U de-favors propagation. By chosing different initial wave packets, one finds signa-
tures of the duality transformation discussed in section 1.1. A sub-diffusive regime
(t1 <t< t2) where interaction favors a slow TTP propagation follows.

To study the motion of two electrons with opposite spins in a one dimensional Ander-
son tight binding model with on site interaction, we numerically solve the discretized
TTP Schrodinger equation

%(W)(He))— [t —e)) = H]y(t)). (21)

To solve Eq.(21), we use an automaton-like algorithm[25], which relies on a formula-
tion of discrete scalar wave propagation in an arbitrary inhomogeneous medium by
the use of elementary processes obeying a discrete Huygens’ principle and satisfying
fundamental symmetries, as described in Ref. [25]. Our algorithm avoids the direct
discretization procedure and incorporates the symmetries underlying the Anderson
model at the lowest stage of the construction. As a consequence the algorithm pre-
serves the unitarity of the dynamics, insuring the normalization of the wave-function
at all times, 37 |¥nyna(t)]? = 1, up to a small correction of order €. Besides,
the construction is optimized for implementing the algorithm on massively parallel
machines. The numerical simulations have been performed for a time step ¢ = 0.05 on
a 16K processor Connexion Machine. Given a value of the disorder strength W and
a disorder configuration, the wave-function has been calculated for chains of length
as large as L = 1024 and up to a maximum of 10¢ units of time.

In this section, all the energies are given in units of 1/e. The times are then expressed
in the corresponding units (¢). The sites are labeled from —L/2 to +L/2, such that

11



the site n = 0 is located in the middle of the chain. The initial condition corresponds
to

1
Uny,ns(0) = ¥nyn,(€) = ﬁ(émyoénz,po + 0n2,00n4,00)
where (n11n2|¥(t)) = ¥n, n,(t). When € is small enough, the discrete time Eq.(21) has
the same physical content than its continuous version.
To study the spreading R(t) of the center of mass and the size p(t) of the pair, we

use the following functions:

ny—n N9 — 7g)> V2
R() = (wa(t)ﬁ“ 1 )) (22)

ni1,n2

B _ 9 1/2
plt) = (lenl,mw(”l T ) (23

n1,n2

where 1_7‘1,2 = Enl,nz |wﬂ1,ﬂ2(t)|2n1,2'

The results illustrate the TIP delocalization effect [6] in a strongly disordered chain.
This effect is a consequence of the mixing by the interaction of free boson states close in
energy, delocalizing the TTP system in the free boson basis. Since the one body states
are localized, this delocalization in the free boson basis also means delocalization in
real space.

While the two particles without interaction are confined to a localization domain in
the random potential which is very quickly reached (typically for ¢ & 200), at U = 1
the center of mass becomes delocalized [4]. This TIP ellipsoidal localization domain is
reached and stops to spread after a considerably larger time (typically for ¢ &7 5.10%).
For a given sample, one can see that [¢,,, (¢! = 5.10*)|* does not homogeneously
fill the ellipse, and is characterized by large fluctuations, mainly near the border of
the ellipse [4]. These fluctuations are somewhat similar to those characterizing the
interaction matrix elements coupling the free boson states (see Sec. 1.2 and Ref. [2]).
We now study the intermediary time scales during which the center of mass R(?)
spreads, before the time ¢5 where it saturates and TIP localization occurs. For U = 0,
the aspect ratio R(t)/p(t) of [tn, n,(t)|? remains equal to one at all times, but for
U # 0, the time evolution of this ratio exhibits three regimes (Fig. 4), delimited by
two characteristic time scales 1 and #2. For ¢ < #1, the repulsive interaction favors
p(t) and de-favors R(t). The ratio R(t)/p(t) decreases. This is the ballistic regime
characterizing length scales smaller than ;. The situation is opposite for 11 < t < #3
where L1 has been reached and the interaction assisted propagation of the center of
mass begins, on scales larger than L;. The increase of R(t) is now much faster than
the increase of p(t), and the ratio R(#)/p(t) increases. Ls is reached at t = 5 where
TTP localization occurs.

For t <ty we find that the spreading of the center of mass is almost ballistic yielding
R(t) ~ v(U)t*"Y) with u(U) ~ 1 and that the interaction reduces the increase of R(t).
The time evolution strongly depends on the initial condition. When the two particles
are injected on the same site at ¢ = 0, with an energy of order U, the spreading of the
center of mass is almost suppressed by a too large interaction. This is the dynamics
associated to the molecular states |nn), which do not decay when U becomes very

large (3, 4].
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Fig. 4: Single sample with L; = 16, L = 1024 and U = 1. Left: R(t)/p(t). Right: R(¢),
p(t) and p(t) for U =0and U = 1.

On the contrary, injecting the two particles at two neighboring sites (0 and py = 2)
with an energy close to £ = 0, one can see the dynamics associated to the hard core
boson states and the consequence of the duality relation U <> 1/U between the free
bosons and the hard core bosons [4]. Averages over the random potential at different
times clearly confirm that the duality appears in the quantum dynamics of R(t) for
both, the ballistic and the sub-diffusive regime [4].

To define the characteristic time ¢; separating the ballistic and sub-diffusive regimes,
one can use many criteria. For instance, #; can be defined (i) as the time tT'" where the
minimum of R(t)/p(t) is reached (see Fig.4); (ii) as the time scale #7 allowing to map
the curves R(t)/p(t) onto a single scaling curve R(t)/p(t) = fs(t/t}). The existence
of such a scaling is shown in Fig. 5, the resulting time being 2—11 =f(U)=~1-0.3U.
We have checked that the definitions (i) and (ii) are compatible [4].
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Fig. 5: Rescaling R(t/t]) with L; = 24 U = 0.5 (pluses), U = 1 (squares), U = 1.5
(diamonds), U = 2 (full triangles) and U = 1 L1 = 16 (triangles), L1 = 36 (stars), L1 = 50
(crosses).
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The interesting feature of ™" is that R & p at this time, as when U/ = 0. This time
where the effect of the interaction is inverted should be related to the size L where
the TIP level curvature (see Section 1.4 and Ref. [5]) does not depend on U.

After the ballistic propagation for ¢ < t1, the spreading of the center of mass measured
by R(t) saturates without interaction. This is due to one particle quantum interfer-
ences yielding one particle Anderson localization. When U # 0, this saturation is
suppressed, but the spreading R(¢) has now a so slow increase that a logarithmic
scale for the time ¢ is appropriate.

For the relative separation p(¢) between the two particles, the prediction p(t) &~ Li(1+
In(T1¢)) [26] is in good agreement with the numerical results [4]. The evolution of
the center of mass is on the contrary not described by the (modified) diffusion law
R(t) & /Ds(t)t, but has a much slower logarithmic motion R(t) x log(t). This
observation is related [4] to the multifractality of the interaction matrix elements in
one dimension and the critical statistics observed at L = L.

1.4 Level curvatures

We now discuss the sensitivity of the TTP energy levels with respect to a magnetic
flux ¢ enclosed by a one-dimensional ring. This yields additional informations on the
quantum dynamics [5]. The flux appears in the phase of the hopping elements ¢ =
tgexp(2mi¢/L). The dimensionless flux ¢ = ¢/pg with the flux quantum ¢ = he/e.
For the one-particle case the curvatures ¢, = 82€a/8¢2|¢=0 of the eigenvalues ¢, of
H are directly related to the conductance by means of the Thouless relation.

The absolute values of the curvatures of different levels (even within the same disorder
realization) usually differ by many orders of magnitude, making it difficult to obtain
reliable numerical results for small as well as for large curvatures. Therefore we
calculate the two-particle eigenenergies at several values of the magnetic flux between
¢ =0 and ¢ ~ 1073, For each of the M eigenvalues, we first estimate the fourth
derivative with respect to the flux. Then, we perform a least square fit with a parabola
to the calculated data. The weights of the data points at different flux values are
adjusted individually for each of the eigenvalues as a function of the estimates for the
fourth derivative and the typical inaccuracy of the numerically calculated eigenvalues
[27].

Since we want to discuss typical values of the curvatures as a function of disorder
and interaction strength, the averaging technique must be chosen carefully. We found
that the most reproducible results for typical curvatures are obtained by fitting the
distribution of curvatures (rather than computing averages) because this minimizes
the influence of the statistically less accurate points in the tails of the distribution.
We always used a log-normal fit for this purpose, yielding numerically reliable results
for the average (In |¢|) and introduce é = exp({In|c|)) as a typical curvature [5].
Interactions have a significant influence on the typical two-particle level curvatures.
This can be seen by comparing the open symbols in Fig. 6 (which are for U = 0.5) to
the non-interacting case given by the full symbols. The influence of the interaction is
shown for disorder strengths W = 0.75 and W = 1.5. The main observation is that
while at low disorder interactions decrease the curvatures, the latter are increased at
higher disorder when the one-particle states are localized. This is a direct confirmation
of the prediction by Akkermans and Pichard [14]. A closer look at the data reveals a
strong dependence of the effect on the energy regime with a tendency to remove the
dip in the curves around E = 0.
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Fig. 6: Left: The energy dependence of typical curvatures for different disorder strengths
W and L = 100. (In|c|) is plotted for the cases without (full symbols, connected by lines)
and with interaction U = 0.5 (open symbols). Right: The difference of the logarithms
of the dimensionless curvatures §(U) at interaction strength U = 0.5 and U = 0 versus
the logarithm of §(0). Full symbols represent the energy range [—2.5 : —1], open symbols
[1:2.5]. Different ring sizes L = 75 with W = 0.9 and W = 1.8, L. = 100 with W between
0.75 and W = 1.5, L, = 150 with W = 0.6 and W = 1.2, I, = 180 with W = 0.45 and
W = 1.1. The dotted line has the same slope m =~ —0.13 as the scaling curves. The inset
shows the dependence m(U) of this slope on the interaction strength U.

Since the influence of the interaction depends on the mobility of the particles (increase
for localized, decrease for metallic samples), it is tempting to define a dimensionless
curvature §(U) = ¢/Ay where ¢ is the typical curvature at interaction U and A;
2(2tg + W) /L is the mean one-particle level spacing, and to plot the interaction-
induced change of curvatures over the conductance-like parameter §(0).

In Fig. 6, the difference between the logarithms of the typical absolute values of the
dimensionless curvatures with interaction U = 0.5 and without interaction are plotted
versus the logarithm of the conductance-like parameter §(0) in the energy intervals
[-2.5: —1] and [1 : 2.5], for different ring sizes and disorder strengths W. We have
considered also other energy values [5] and conclude that the interaction-induced
change of the curvatures depends not on the energy and the disorder separately, but
on only one parameter which is indeed the conductance-like §(0). This one-parameter
scaling is universal within a given sign of the energy. No change of the scaling curves
is observed when the ground state energy is approached. This means that the effect
is relevant also for energetically low-lying excitations relevant for transport at low
temperatures. This is consistent with the findings of Ref. [28, 29].

Our results clearly demonstrate the existence of a critical §(0) = erit below which the
interaction enhances two-particle level curvatures, and above which the interaction
tends to decrease the typical curvatures. Since the level curvature without interaction
is related to the conductance of the system, this clearly confirms that the sign of the
interaction-induced change indeed depends on the transport properties of the non-
interacting system as predicted [14]. With an estimate of the typical one-particle
curvature one finds that the critical conductances observed correspond to localization
lengths L1 which are about 5 to 6 times smaller than the circumference of the ring [5].
Lower conductances §(0) < Jerit correspond to localized states and the enhancement
of the curvatures is a consequence of the enhancement of the two-particle localization
length by the interactions proposed by Shepelyansky [6]. Larger conductances §(0) >
Jerit can be interpreted as indicating more or less extended one-particle states for
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which the transport is suppressed by the interactions.

Within the numerical errors, the data lie on the scaling curve which corresponds to
their sign of energy. In the logarithmic representation shown in Fig. 6 the scaling
curves are very close to straight lines. The slopes m(U) vary between m = 0 (at
U =0and U = o0) and the minimal value m &~ —0.2 at intermediate interaction
strength. The behavior of m(U) (inset of Fig. 6) shows again the duality relation
(Section 1.1 and Ref [3]).

The behavior of the curvatures is closely related to what is found for the dynamics of
two-particle wave-packets (Section 1.3 and Ref. [4]). The interaction leads to a slower
spreading at short times, before L is reached. For these short times, only a part of
the system smaller than L; is explored by the particles and their reduced mobility
corresponds to the decrease of the curvature in the metallic regime (L < L) when
g(0) is large. Above a characteristic time ¢1, a slow interaction assisted propagation
continues to increase the size of the wave-packet beyond the non-interacting satura-
tion. This is reminiscent of the increase of curvatures in insulating samples (L > L4)
when § is small.

Having considered also the effect of long-range interactions, we found that the range of
the interaction has only a very small influence on the typical curvatures, as compared
to the difference between U = 0 and short-range interaction [27]. This may yield
problems in a possible experimental verification [30] of the delocalization effect at
strong disorder as a function of the range of the interaction.

Additionally, it was found that not only the typical value of the two-particle level
curvatures but also their probability distribution P(|c|) changes as a function of the
interaction [5].

2 Charge reorganization and Delocalization of the ground state for a
finite density of spinless fermions

So far, we have considered two particle states close to the TTP band center, at energies
much higher than the TTP ground state. At those energies, the TTP levels are very
dense, with energy spacings of order A, as 4¢/L%. The mixing by the interaction and
the resulting delocalization effect can be strong. For the finite density system, one
may assume a Fermi gas and quasi-particle excitations. In this hypothesis, the density
of two quasi-particles above the Fermi sea is much lower at small excitation energy
¢, with energy spacings of order A¥ (¢) v A?/e instead of As. Ay ~ 2t/L denotes
the one particle spacing. Our previous study applies for very high excitation energies
€ &~ t where A ~ A,y. This point of view assumes that the ground state itself cannot
be reorganized by the interaction. For a strong enough disorder, one should however
expect such a reorganization. Without interaction, one has an Anderson insulator
(Fermi glass) characterized by an inhomogeneous charge configuration: strongly lo-
calized states are populated with the restriction imposed by Pauli principle. For a
strong interaction, one has a Mott insulator (or a pinned Wigner crystal for long range
Coulomb interaction) characterized by a more homogeneous periodic charge configu-
ration, slightly distorted by the random substrate. The crossover between those two
limits will yield a profound spatial reorganization of the ground state [28], making
the system more sensitive to any external perturbation as a twist in the boundary
conditions or a flux ® in a ring.

To illustrate this, we consider N spinless fermions on a chain of L sites with nearest
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Fig. 7: Left: Charge configuration for a typical sample (d) for N = 10 particles on L = 20
sites at W = 4.5. Right: Phase sensitivity D(U) for four different samples with N = 10,
L =20and W = 4.5 in (decimal) logarithmic scale. Thick dots and inset: average of log(D).

neighbor (NN) interaction

L L L

H= _tZ(CICi—l +el_je) + Z Vin; + Uznini—l

i=1 i=1 i=1

and twisted boundary conditions, ¢g = exp(i®)c;,. The operators ¢; (CZT) destroy
(create) a particle on site ¢ and n; = cZTcZ- is the occupation operator. The on-site
random energies V; are drawn from a box distribution of width 2W. The strength
of the disorder 1 and the interaction U are measured in units of the kinetic energy
scale (t=1). We study interaction between NN at half filling, where the ground state
will be a periodic array of charges located on the even or odd sites of the chain when
U — oc.

The numerical results are obtained with the density matrix renormalization group
(DMRG) algorithm [31]. Ground state properties in disordered 1d systems can be
calculated with an accuracy comparable to exact diagonalization, but for much larger
systems (we keep up to 2000 states per block [33]).

The reorganization of the ground state induced by the NN repulsion is shown in
Fig. 7, where the density p (expectation value of n;) is plotted as a function of U and
site index 7. To favor the inhomogeneous configuration, the disorder is taken large
(W=4.5) and L1~ 25/W?is of order of the mean spacing kf_l =2 between the charges.
For U a0, one can see a strongly inhomogeneous and sample dependent density, while
for large U a periodic array of charges sets in. These two limits are separated by a
sample dependent crossover regime. For certain random configurations, the periodic
array is quickly obtained by a weak repulsive interaction, while one needs a strong
interaction for other samples.

To measure the delocalization effect associated to this change of configuration, we
study the phase sensitivity of the ground state. The energy difference between periodic
(® = 0) and anti-periodic (® = 7) boundary conditions, AE = (=) (E(0)— E())
conveys similar information, in the localized regime, as other measures of the response
of the ground state to an infinitesimal flux threading the ring: the Kohn curvature
(charge stiffness) o< E (® = 0) and the persistent current [1]J o< —E'(® = 0). For
strictly 1d systems, the sign of E(0)— FE() simply depends on the parity of N, and
the factor (—)V makes AF positive.

The phase sensitivity D(U) = (L/2)AFE is shown in Fig. 7 for four samples at half
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Fig. 8: Left: Phase sensitivity for the sample d of Fig. 7. Solid: D(W) at U =0.9; dashed:
D(U) at W =1. Inset: Probability distribution (dots) of n=1og D(2)—1log D(0) calculated
from 10000 samples (L =20, N =10, W =4.5) fitted by a Gaussian with variance o =1.46.
Right: Phase sensitivity D(U) for L = 20 and L = 40 at half filling and disorder W = 3.5.
Dashed lines with stars and diamonds represent two individual samples at . = 20, dotted
lines are for the lengthened samples at L. = 40. Thick dots and solid lines are the averages
over a large number of samples.

filling with W = 4.5. Both for U ~ 0 and U > 1, D(U) is very small, but sharp
peaks appear at sample dependent values U., where D(U,) in certain samples can be
4 orders of magnitude larger than for free fermions. Remarkably, the curves for each
sample do not present any singularity at U/ =0 which could allow to locate the free
fermion case. Peaks can be seen at different sample dependent values of U (positive
or negative). For small repulsive interactions, the system is an Anderson insulator
delocalized by U, and D(U) increases as a function of U.

At U., the regular array of charges is established, and thereafter it becomes more
and more rigid (pinned by the random lattice); thus D(U) decreases as a function
of U. The thresholds U, are strongly sample dependent giving rise to a very wide
distribution of D(U): the ensemble average at a given U mixes very different behaviors
and provides very incomplete information. As shown in Fig. 7, (log D(U)) decreases
for repulsive interactions, except for a small interval around U &t (inset) where a
local maximum is obtained.

We obtain log-normal distributions for D(U) as well as for the difference n=1log D(U)—
log D(0) that measures the relative change of the phase sensitivity with respect to the
free fermion case. The width of the -distribution depends on U. For U =2 variations
of D over more than an order of magnitude are typical (inset of Fig. 8).

This delocalization effect of the ground state for U =t only occurs at strong disorder.
For weak disorder (W =1, L1 & M) we recover the behavior expected starting from
the clean limit, using bosonization and renormalization group arguments [32, 33]: a
repulsive interaction reinforces localization, in contrast to a (not too strong) attractive
interaction which delocalizes (Fig. 8). Fixing U =0.9, we show (in the same graph)
how one goes from the weak to the strong disorder limit in a given sample (the
same seed of the random number generator is kept). The phase sensitivity decreases
when we increase the strength of the potential fluctuations, except around W =4.5
(kel~ 1) where the charge reorganization takes place. The conclusion that a repulsive
interaction favors localization is no longer valid. Similar conclusions have been drawn
from a study of the conductance of one- and two-dimensional systems at half filling

[29].
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One may suspect that going to samples longer than those we have presented so far
induces a certain amount of self-averaging, thus reducing the effect of the charge
reorganization. We have addressed the problem of the thermodynamic limit by con-
sidering a sample of length L, and then putting in series another segment with the
same length and an independent impurity potential, thereby keeping the electron
density constant. Such a study is presented in Fig 8, where the phase sensitivity of
two samples with 7, = 20 (think dashed and solid lines) is shown together with the
corresponding D(U) for I = 40 (thick dashed and solid lines). Doubling I and N
typically shifts log D(U) four orders of magnitude below, except around the peaks,
which are still present in the longer samples and become much sharper. In some
samples additional structure, arising from the charge reorganization in the attached
portion, may appear. Thus, the relative delocalization effect looks larger when the
size is doubled. The complete study of the thermodynamic limit and the behavior of
the localization length as a function of U is in progress.

3 Summary

For two interacting excited particles in a disordered one-dimensional chain, we ob-
tained a consistent picture of a rich and complex behavior of the system as a function
of the disorder and of the interaction for a fixed kinetic energy. The multifractal
properties of the perturbation induced by the interaction or by the kinetic energy
around the limits where U — 0 or U — oo respectively have the interesting con-
sequence that the TIP spectrum can never have spectral statistics more rigid than
critical statistics connected with weak quantum chaos. These maximum correlations
are accompanied by multifractal wave-functions and occur at an intermediate inter-
action strength. A duality transformation maps the two limits onto each other whose
signature can be seen for many different quantities. Another consequence of the
multifractal perturbation is the slow logarithmic sub-diffusive delocalization of the
center-of-mass extension of wave-packets found in the real-time dynamics. Further,
it becomes clear from studies of the level curvatures and the real-time dynamics of
wave-packets that the interactions improve transport only in the regime where one-
particle wave-functions are localized. In the metallic regime, they rather decrease the
mobility of the particles.

From a DMRG study of the ground state of spinless fermions with NN interactions
at half filling, we draw a few important conclusions.

(1) Each sample should be individually studied. The (log)-averages over the ensemble
are not representative. The distribution of In D(U) is very broad, fluctuations of a
few orders of magnitude being observed in the studied case.

(i) The ratio L1/(L/N) (say k¢l) defines different regimes for short-range repulsive
interactions. For k¢l > 1, the interaction establishes a correlated array of charges inside
Ly which is pinned by the random lattice. The larger is U, the more rigid is the array,
the more efficient is the pinning and the system is strongly insulating (Mott). When
kel < 1, the particles can be strongly localized far away from each other, and a short
range interaction does not affect a strongly insulating ground state (Fermi glass). Only
very excited quasi-particles can be delocalized by the interaction. Between those two
limits, ksl & 1, the ground state can be deeply reorganized by a repulsive interaction
U wst. This reorganization is accompanied by a large delocalization effect.

In the two studied cases, we obtain an interaction induced delocalization for inter-
mediate strengths of the interaction, in a crossover regime between two “integrable”
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limits with Poisson spectral statistics: free bosons and hard core bosons for the TTP

problem, Fermi glass and Mott insulator for the ground state at half filling. Eventu-

ally, the spins should not be frozen as assumed in this study. For instance, for two

interacting electrons, the crossover between the free fermions and the hard core bosons
may be artificial. We should rather expect an interesting magnetic crossover induced

by the interaction. Around U,, the two opposite spins should flip and become parallel,

the orbital wave function becoming antisymmetric. In our case, imposing opposite
spins, we have been obliged to resymmetrize artificially the Slater determinants (hard
core bosons). A study taking into account possible spin effects is in progress.
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