59 research outputs found

    Protecting Important Sites for Biodiversity Contributes to Meeting Global Conservation Targets

    Get PDF
    Protected areas (PAs) are a cornerstone of conservation efforts and now cover nearly 13% of the world's land surface, with the world's governments committed to expand this to 17%. However, as biodiversity continues to decline, the effectiveness of PAs in reducing the extinction risk of species remains largely untested. We analyzed PA coverage and trends in species' extinction risk at globally significant sites for conserving birds (10,993 Important Bird Areas, IBAs) and highly threatened vertebrates and conifers (588 Alliance for Zero Extinction sites, AZEs) (referred to collectively hereafter as ‘important sites’). Species occurring in important sites with greater PA coverage experienced smaller increases in extinction risk over recent decades: the increase was half as large for bird species with>50% of the IBAs at which they occur completely covered by PAs, and a third lower for birds, mammals and amphibians restricted to protected AZEs (compared with unprotected or partially protected sites). Globally, half of the important sites for biodiversity conservation remain unprotected (49% of IBAs, 51% of AZEs). While PA coverage of important sites has increased over time, the proportion of PA area covering important sites, as opposed to less important land, has declined (by 0.45–1.14% annually since 1950 for IBAs and 0.79–1.49% annually for AZEs). Thus, while appropriately located PAs may slow the rate at which species are driven towards extinction, recent PA network expansion has under-represented important sites. We conclude that better targeted expansion of PA networks would help to improve biodiversity trends

    A radiation hybrid map of the human genome

    No full text
    We have developed a panel of whole-genome radiation hybrids by fusing irradiated diploid human fibroblasts with recipient hamster cells. This panel of 168 cell lines has been typed with microsatellite markers of known genetic location. Of 711 AFM genetic markers 404 were selected to construct a robust framework map that spans all the autosomes and the X chromosome. To demonstrate the utility of the panel, 374 expressed sequence tags (ESTs) previously assigned to chromosomes 1, 2, 14 and 16 were localized on this map. All of these ESTs could be positioned by pairwise linkage to one of the framework markers with a LOD score of greater than 8. The whole genome radiation hybrid panel described here has been used as the starting material for the Genebridge4 panel that is being made widely available for genome mapping projects

    IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas.

    No full text
    International audienceTo clarify the relationships between marginal zone lymphomas (MZLs) and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas (WM/LPLs), immunoglobulin heavy chain variable gene (IGHV) features were analyzed and the occurrence of MYD88 L265P mutations was identified in a series of 123 patients: 53 MZLs from the spleen (SMZLs), 11 from lymph nodes (NMZLs), 28 mucosa-associated lymphatic tissue (MALT) lymphomas and 31 WM/LPLs. SMZLs were characterized by overrepresentation of IGHV1-2 gene rearrangements with a canonical motif, without selection pressure and with long CDR3 segments. NMZLs had increased frequencies of IGHV3 genes. The IGHV gene was unmutated in most cases, often with long CDR3 segments. MALT lymphomas were usually associated with a mutated IGHV gene, but with the absence of selection pressure. WM/LPLs were associated with an IGHV3-23 overrepresentation and high IGHV mutation rate, with features of selection pressure and short CDR3 segments. MYD88 L265P mutations were almost restricted exclusively to WM/LPL patients. Taken all diagnoses together, all patients with MYD88 L265P mutations had an immunoglobulin M peak and almost all patients except one had bone marrow infiltration. These results demonstrate that the history of antigen exposure of the four entities studied was different and MYD88 L265P was specifically associated with WM/LPLs. WM/LPL may thus be functionally associated with constitutive nuclear factor-κB activation

    In Vitro Liquid Extraction Surface Analysis Mass Spectrometry (ivLESA-MS) for Direct Metabolic Analysis of Adherent Cells in Culture

    No full text
    Conventional metabolomic methods include extensive sample preparation steps and long analytical run times, increasing the likelihood of processing artifacts and limiting high throughput applications. We present here in vitro liquid extraction surface analysis mass spectrometry (ivLESA-MS), a variation on LESA-MS, performed directly on adherent cells grown in 96-well cell culture plates. To accomplish this, culture medium was aspirated immediately prior to analysis, and metabolites were extracted using LESA from the cell monolayer surface, followed by nano-electrospray ionization and MS analysis in negative ion mode. We applied this platform to characterize and compare lipidomic profiles of multiple breast cancer cell lines growing in culture (MCF-7, ZR-75-1, MDA-MB-453, and MDA-MB-231) and revealed distinct and reproducible lipidomic signatures between the cell lines. Additionally, we demonstrated time-dependent processing artifacts, underscoring the importance of immediate analysis. ivLESA-MS represents a rapid in vitro metabolomic method, which precludes the need for quenching, cell harvesting, sample preparation, and chromatography, significantly shortening preparation and analysis time while minimizing processing artifacts. This method could be further adapted to test drugs in vitro in a high throughput manner

    The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells.

    No full text
    Understanding the developmental mechanisms of follicular helper T cells (TFH cells) in humans is relevant to the clinic. However, the factors that drive the differentiation of human CD4+ helper T cells into TFH cells remain largely undefined. Here we found that transforming growth factor-β (TGF-β) provided critical additional signals for the transcription factors STAT3 and STAT4 to promote initial TFH differentiation in humans. This mechanism did not appear to be shared by mouse helper T cells. Developing human TFH cells that expressed the transcriptional repressor Bcl-6 also expressed RORγt, a transcription factor typically expressed by the TH17 subset of helper T cells. Our study documents a mechanism by which TFH cells and TH17 cells emerge together in inflammatory environments in humans, as is often observed in many human autoimmune diseases. Nat Immunol 2014 Sep; 15(9):856-65
    • …
    corecore