1,541 research outputs found

    One particle spectral weight of the three dimensional single band Hubbard model

    Full text link
    Dynamic properties of the three-dimensional single-band Hubbard model are studied using Quantum Monte Carlo combined with the maximum entropy technique. At half-filling, there is a clear gap in the density of states and well-defined quasiparticle peaks at the top (bottom) of the lower (upper) Hubbard band. We find an antiferromagnetically induced weight above the naive Fermi momentum. Upon hole doping, the chemical potential moves to the top of the lower band where a robust peak is observed. Results are compared with spin-density-wave (SDW) mean-field and self consistent Born approximation results, and also with the infinite dimensional Hubbard model, and experimental photoemission (PES) for three dimensional transition-metal oxides.Comment: 11 pages, REVTeX, 16 figures included using psfig.sty. Ref.30 correcte

    Genetic influences on neonatal cortical thickness and surface area

    Get PDF
    Genetic and environmental influences on cortical thickness (CT) and surface area (SA) are thought to vary in a complex and dynamic way across the lifespan. It has been established that CT and SA are genetically distinct in older children, adolescents, and adults, and that heritability varies across cortical regions. Very little, however, is known about how genetic and environmental factors influence infant CT and SA. Using structural MRI, we performed the first assessment of genetic and environmental influences on normal variation of SA and CT in 360 twin neonates. We observed strong and significant additive genetic influences on total SA (a2 = 0.78) and small and nonsignificant genetic influences on average CT (a2 = 0.29). Moreover, we found significant genetic overlap (genetic correlation = 0.65) between these global cortical measures. Regionally, there were minimal genetic influences across the cortex for both CT and SA measures and no distinct patterns of genetic regionalization. Overall, outcomes from this study suggest a dynamic relationship between CT and SA during the neonatal period and provide novel insights into how genetic influences shape cortical structure during early development

    Surface effects in multiband superconductors. Application to MgB2_2

    Full text link
    Metals with many bands at the Fermi level can have different band dependent gaps in the superconducting state. The absence of translational symmetry at an interface can induce interband scattering and modify the superconducting properties. We dicuss the relevance of these effects to recent experiments in MgB2_2

    Ultrasound attenuation in gap-anisotropic systems

    Get PDF
    Transverse ultrasound attenuation provides a weakly-coupled probe of momentum current correlations in electronic systems. We develop a simple theory for the interpretation of transverse ultrasound attenuation coefficients in systems with nodal gap anisotropy. Applying this theory we show how ultrasound can delineate between extended-s and d-wave scenarios for the cuprate superconductors.Comment: Uuencode file: 4 pages (Revtex), 3 figures. Some references adde

    Hopf algebras and Markov chains: Two examples and a theory

    Get PDF
    The operation of squaring (coproduct followed by product) in a combinatorial Hopf algebra is shown to induce a Markov chain in natural bases. Chains constructed in this way include widely studied methods of card shuffling, a natural "rock-breaking" process, and Markov chains on simplicial complexes. Many of these chains can be explictly diagonalized using the primitive elements of the algebra and the combinatorics of the free Lie algebra. For card shuffling, this gives an explicit description of the eigenvectors. For rock-breaking, an explicit description of the quasi-stationary distribution and sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes will only appear on the version on Amy Pang's website, the arXiv version will not be updated.

    Single-hole properties in the tt-JJ and strong-coupling models

    Full text link
    We report numerical results for the single-hole properties in the tt-JJ model and the strong-coupling approximation to the Hubbard model in two dimensions. Using the hopping basis with over 10610^6 states we discuss (for an infinite system) the bandwidth, the leading Fourier coefficients in the dispersion, the band masses, and the spin-spin correlations near the hole. We compare our results with those obtained by other methods. The band minimum is found to be at (π/2,π/2\pi/2,\pi/2) for the tt-JJ model for 0.1≤t/J≤100.1 \leq t/J \leq 10, and for the strong-coupling model for 1≤t/J≤101 \leq t/J \leq 10. The bandwidth in both models is approximately 2J2J at large t/Jt/J, in rough agreement with loop-expansion results but in disagreement with other results. The strong-coupling bandwidth for t/J\agt6 can be obtained from the tt-JJ model by treating the three-site terms in first-order perturbation theory. The dispersion along the magnetic zone face is flat, giving a large parallel/perpendicular band mass ratio.Comment: 1 RevTeX file with epsf directives to include 8 .eps figures 8 figure files encoded using uufile

    The Fueling and Evolution of AGN: Internal and External Triggers

    Full text link
    In this chapter, I review the fueling and evolution of active galactic nuclei (AGN) under the influence of internal and external triggers, namely intrinsic properties of host galaxies (morphological or Hubble type, color, presence of bars and other non-axisymmetric features, etc) and external factors such as environment and interactions. The most daunting challenge in fueling AGN is arguably the angular momentum problem as even matter located at a radius of a few hundred pc must lose more than 99.99 % of its specific angular momentum before it is fit for consumption by a BH. I review mass accretion rates, angular momentum requirements, the effectiveness of different fueling mechanisms, and the growth and mass density of black BHs at different epochs. I discuss connections between the nuclear and larger-scale properties of AGN, both locally and at intermediate redshifts, outlining some recent results from the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
    • …
    corecore