31,731 research outputs found

    Modular and standardized GAS payload hardware

    Get PDF
    The benefits of the standardized hardware included in the Get Away Special (GAS) space shuttle payloads are discussed. Payload requirements within the GAS program are summarized

    A causal multifractal stochastic equation and its statistical properties

    Full text link
    Multiplicative cascades have been introduced in turbulence to generate random or deterministic fields having intermittent values and long-range power-law correlations. Generally this is done using discrete construction rules leading to discrete cascades. Here a causal log-normal stochastic process is introduced; its multifractal properties are demonstrated together with other properties such as the composition rule for scale dependence and stochastic differential equations for time and scale evolutions. This multifractal stochastic process is continuous in scale ratio and in time. It has a simple generating equation and can be used to generate sequentially time series of any length.Comment: Eur. Phys. J. B (in press

    A spatially resolved limb flare on Algol B observed with XMM-Newton

    Full text link
    We report XMM-Newton observations of the eclipsing binary Algol A (B8V) and B (K2III). The XMM-Newton data cover the phase interval 0.35 - 0.58, i.e., specifically the time of optical secondary minimum, when the X-ray dark B-type star occults a major fraction of the X-ray bright K-type star. During the eclipse a flare was observed with complete light curve coverage. The decay part of the flare can be well described with an exponential decay law allowing a rectification of the light curve and a reconstruction of the flaring plasma region. The flare occurred near the limb of Algol B at a height of about 0.1R with plasma densities of a few times 10^11 cm^-3 consistent with spectroscopic density estimates. No eclipse of the quiescent X-ray emission is observed leading us to the conclusion that the overall coronal filling factor of Algol B is small.Comment: 8 pages, 7 figures, accepted by A&

    Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition

    Full text link
    In the marine environment, many fields have fluctuations over a large range of different spatial and temporal scales. These quantities can be nonlinear \red{and} non-stationary, and often interact with each other. A good method to study the multiple scale dynamics of such time series, and their correlations, is needed. In this paper an application of an empirical mode decomposition based time dependent intrinsic correlation, \red{of} two coastal oceanic time series, temperature and dissolved oxygen (saturation percentage) is presented. The two time series are recorded every 20 minutes \red{for} 7 years, from 2004 to 2011. The application of the Empirical Mode Decomposition on such time series is illustrated, and the power spectra of the time series are estimated using the Hilbert transform (Hilbert spectral analysis). Power-law regimes are found with slopes of 1.33 for dissolved oxygen and 1.68 for temperature at high frequencies (between 1.2 and 12 hours) \red{with} both close to 1.9 for lower frequencies (time scales from 2 to 100 days). Moreover, the time evolution and scale dependence of cross correlations between both series are considered. The trends are perfectly anti-correlated. The modes of mean year 3 and 1 year have also negative correlation, whereas higher frequency modes have a much smaller correlation. The estimation of time-dependent intrinsic correlations helps to show patterns of correlations at different scales, for different modes.Comment: 35 pages with 22 figure

    Lagrangian Cascade in Three-Dimensional Homogeneous and Isotropic Turbulence

    Full text link
    In this work, the scaling statistics of the dissipation along Lagrangian trajectories are investigated by using fluid tracer particles obtained from a high resolution direct numerical simulation with Reλ=400Re_{\lambda}=400. Both the energy dissipation rate ϵ\epsilon and the local time averaged ϵτ\epsilon_{\tau} agree rather well with the lognormal distribution hypothesis. Several statistics are then examined. It is found that the autocorrelation function ρ(τ)\rho(\tau) of ln(ϵ(t))\ln(\epsilon(t)) and variance σ2(τ)\sigma^2(\tau) of ln(ϵτ(t))\ln(\epsilon_{\tau}(t)) obey a log-law with scaling exponent β=β=0.30\beta'=\beta=0.30 compatible with the intermittency parameter μ=0.30\mu=0.30. The qqth-order moment of ϵτ\epsilon_{\tau} has a clear power-law on the inertial range 10<τ/τη<10010<\tau/\tau_{\eta}<100. The measured scaling exponent KL(q)K_L(q) agrees remarkably with qζL(2q)q-\zeta_L(2q) where ζL(2q)\zeta_L(2q) is the scaling exponent estimated using the Hilbert methodology. All these results suggest that the dissipation along Lagrangian trajectories could be modelled by a multiplicative cascade.Comment: 10 pages with 7 figures accepted for Journal of Fluid Mechanics as Rapid

    The moon: An abundant source of clean and safe fusion fuel for the 21st century

    Get PDF
    It is shown how helium-3 can be obtained from the moon and how its use in fusion reactors can benefit the inhabitants of this planet. The physics and technology issues associated with the use of He-3 is addressed. A description is given of He-3 distribution on the moon and of methods which could be used to retrieve it
    corecore