65 research outputs found

    Regional carbon fluxes and the effect of topography on the variability of atmospheric CO2.

    Get PDF
    Using a mesoscale atmospheric circulation model, it is shown that relatively modest topography height differences of ∌500 m over 200 km near Zotino (60°N, 89°E) in central Siberia may generate horizontal gradients in CO<inf>2</inf> concentration in the order of 30 ppm. In a case study for 15 and 16 July 1996, when Lloyd et al. (2001) conducted a convective boundary layer budget experiment in the area, we show that advection of these gradients disturbs the relation between diurnal concentration changes in the boundary layer and the surface fluxes. This demonstrates that mesoscale atmospheric heterogeneity may have severe impact on the applicability of methods to derive the regional-scale fluxes from CO<inf>2</inf> concentrations measurements, such as the convective boundary layer budget method or inverse modeling. It is shown that similar mesoscale gradients are likely to occur at many long-term observation stations and tall towers. We use the modeled concentration fields to quantify the horizontal and vertical variability of carbon dioxide in the atmosphere. In future observation campaigns, mesoscale processes may be best accounted for by measuring horizontal variability over a few hundred kilometers and by attempting to quantify the representation errors as a function of mesoscale conditions. Copyright 2007 by the American Geophysical Union

    Neurological Soft Signs Predict Auditory Verbal Hallucinations in Patients with Schizophrenia

    No full text
    Neurological soft signs (NSS) are well documented in individuals with schizophrenia (SZ), yet so far, the relationship between NSS and specific symptom expression is unclear. We studied 76 SZ patients using magnetic resonance imaging (MRI) to determine associations between NSS, positive symptoms, gray matter volume (GMV), and neural activity at rest. SZ patients were hypothesis-driven stratified according to the presence or absence of auditory verbal hallucinations (AVH; n = 34 without vs 42 with AVH) according to the Brief Psychiatric Rating Scale. Structural MRI data were analyzed using voxel-based morphometry, whereas intrinsic neural activity was investigated using regional homogeneity (ReHo) measures. Using ANCOVA, AVH patients showed significantly higher NSS in motor and integrative functions (IF) compared with non-hallucinating (nAVH) patients. Partial correlation revealed that NSS IF were positively associated with AVH symptom severity in AVH patients. Such associations were not confirmed for delusions. In region-of-interest ANCOVAs comprising the left middle and superior temporal gyri, right paracentral lobule, and right inferior parietal lobule (IPL) structure and function, significant differences between AVH and nAVH subgroups were not detected. In a binary logistic regression model, IF scores and right IPL ReHo were significant predictors of AVH. These data suggest significant interrelationships between sensorimotor integration abilities, brain structure and function, and AVH symptom expression

    Aberrant intrinsic neural network strength in individuals with smartphone addiction: An MRI data fusion study

    No full text
    Background and objectives Excessive smartphone use, also referred to as smartphone addiction (SPA), has increasingly attracted neuroscientific interest due to its similarities with other behavioral addictions, particularly internet gaming disorder. Little is known about the neural mechanisms underlying smartphone addiction. We explored interrelationships between brain structure and function to specify neurobiological correlates of SPA on a neural system level. Methods Gray matter volume (GMV) and intrinsic neural activity (INA) were investigated in individuals with SPA (n = 20) and controls (n = 24), using multimodal magnetic resonance imaging and multivariate data fusion techniques, that is, parallel independent component analysis. Results The joint analysis of both data modalities explored shared information between GMV and INA. In particular, two amplitudes of low frequency fluctuations-based independent neural systems significantly differed between individuals with SPA and controls. A medial/dorsolateral prefrontal system exhibited lower functional network strength in individuals with SPA versus controls, whereas the opposite pattern was detected in a parietal cortical/cerebellar system. Neural network strength was significantly related to duration of smartphone use and sleep difficulties. Discussion and conclusions We show modality-specific associations of the brain's resting-state activity with distinct and shared SPA symptom dimensions. In particular, the data suggest contributions of aberrant prefrontal and parietal neural network strength as a possible signature of deficient executive control in SPA. Scientific significance This study suggests distinct neural mechanisms underlying specific biological and behavioral dimensions of excessive smartphone use

    Oxytocin effects on amygdala reactivity to angry faces in males and females with antisocial personality disorder

    No full text
    Jeung-Maarse H, Schmitgen MM, Schmitt R, Bertsch K, Herpertz SC. Oxytocin effects on amygdala reactivity to angry faces in males and females with antisocial personality disorder. Neuropsychopharmacology . 2023.The amygdala is a key region in current neurocircuitry models of reactive aggression as it is crucially involved in detecting social threat and provocation. An increased amygdala reactivity to angry faces has been reported in aggression-prone individuals and the neuropeptide oxytocin (OT) could dampen anger-related amygdala reactivity in a number of mental disorders. One example is the antisocial personality disorder (ASPD) which has so far only been studied in limited numbers. To address the question whether OT can normalize amygdala hyperreactivity to emotional faces, we conducted a functional magnetic resonance imaging experiment with 20 men and 18 women with ASPD and 20 male and 20 female healthy control (HC) participants in a double-blind, randomized, placebo (PLC)-controlled within-subject design. Participants were exposed to an emotion classification task (fearful, angry, and happy faces) after receiving an intranasal dose (24IU) of synthetic OT or PLC. We found OT to attenuate right amygdala hyperactivity to angry faces in participants with ASPD to such an extent that the intensity of amygdala activity in the ASPD group in the OT condition decreased to the level of amygdala activity in the PLC condition in the HC group. There was also a trend that OT effects were generally larger in women than in men. These findings suggest that OT differentially modulates the amygdala following social threatening or provoking cues in dependence of psychopathology (ASPD vs. HC) and sex (male vs. female). Particularly female ASPD patients could benefit from OT in the treatment of reactive aggression. © 2023. The Author(s)

    Ultrasound navigated RFA of liver tumors

    No full text
    Primary liver tumors and liver metastases are of high clinical relevance. They are the fifth most common kind of malignant tumors and the third most common cause of death in the group of malignant tumors. Ultrasound controlled Radio Frequency Ablation (RFA) is accepted as a gentle and inexpensive treatment but suffers from higher recurrence of tumors compared to surgical resection. The main reasons are that only ultrasound images are available during the intervention and radiological data can not be mapped onto the patient. Therefore, exact positioning of the applicator and control of ablation are very difficult to perform. Thus, RFA as therapy usually is chosen only in cases where surgical resection is not possible. As a part of the BMBF project "FUSION" we are developing a 3D ultrasound based navigation system and aim to improve the interventional process to achieve better outcome for patients who are treated with transcutane, ultrasound controlled RFA. The navigation system provides assistance by mapping radiological information (image sets as well as annotations) onto the patient. During an iterative process 3D ultrasound data can be acquired and target positions as well as trajectories of applicator positions can be planned. Ultrasound probe and applicator needle are navigated continuously and independently. Intuitive navigation scenes enable the physician to gain more orientation and confidence during the different steps of applicator positioning. The incorporation of 3D ultrasound fulfills different purposes: On the one hand, intrainterventional 3D data can be used to improve the registration process, on the other hand they can support the pre- and postinterventional comparison of treated tumors

    Cognitive domain-independent aberrant frontoparietal network strength in individuals with excessive smartphone use

    No full text
    Excessive smartphone use (ESU) may fulfill criteria for addictive behavior. In contrast to other related behavioral addictions, particularly Internet Gaming Disorder, little is known about the neural correlates underlying ESU. In this study, we used functional magnetic resonance imaging (fMRI) to acquire task data from three distinct behavioral paradigms, i.e. cue-reactivity, inhibition, and working memory, in individuals with psychometrically defined ESU (n = 19) compared to controls (n-ESU; n = 20). The Smartphone Addiction Inventory (SPAI) was used to quantify ESU-severity according to a novel five-factor model (SPAI-I). A multivariate data fusion approach, i.e. joint Independent Component Analysis (jICA) was employed to analyze fMRI-data derived from three separate experimental conditions, but analyzed jointly to detect converging and domain-independent neural signatures that differ between persons with vs. those without ESU. Across the three functional tasks, jICA identified a predominantly frontoparietal system that showed lower network strength in individuals with ESU compared to n-ESU (p < 0.05 FDR-corrected). Furthermore, significant associations between frontoparietal network strength and SPAI-I's dimensions “time spent” and “craving” were found. The data suggest a frontoparietal cognitive control network as cognitive domain-independent neural signature of excessive and potentially addictive smartphone use
    • 

    corecore