21 research outputs found

    Integrable deformations of strings on symmetric spaces

    Get PDF
    A general class of deformations of integrable sigma-models with symmetric space F/G target-spaces are found. These deformations involve defining the non-abelian T dual of the sigma-model and then replacing the coupling of the Lagrange multiplier imposing flatness with a gauged F/F WZW model. The original sigma-model is obtained in the limit of large level. The resulting deformed theories are shown to preserve both integrability and the equations-of-motion, but involve a deformation of the symplectic structure. It is shown that this deformed symplectic structure involves a linear combination of the original Poisson bracket and a generalization of the Faddeev-Reshetikhin Poisson bracket which we show can be re-expressed as two decoupled F current algebras. It is then shown that the deformation can be incorporated into the classical model of strings on R x F/G via a generalization of the Pohlmeyer reduction. In this case, in the limit of large sigma-model coupling it is shown that the theory becomes the relativistic symmetric space sine-Gordon theory. These results point to the existence of a deformation of this kind for the full Green-Schwarz superstring on AdS5 x S5.Comment: 41 pages, typos corrected, references adde

    S-matrices and quantum group symmetry of k-deformed sigma models

    Get PDF
    Recently, several kinds of integrable deformations of the string world sheet theory in the gauge/gravity correspondence have been constructed. One class of these, the k deformations associated to the more general q deformations but with q=exp(i pi/k) a root of unity, has been shown to be related to a particular discrete deformation of the principal chiral models and (semi-)symmetric space sigma models involving a gauged WZW model. We conjecture a form for the exact S-matrices of the bosonic integrable field theories of this type. The S-matrices imply that the theories have a hidden infinite dimensional affine quantum group symmetry. We provide some evidence, via quantum inverse scattering techniques, that the theories do indeed possess the finite-dimensional part of this quantum grou

    An integrable deformation of the AdS5×S5superstring

    Get PDF
    The S-matrix on the world-sheet theory of the string in AdS5 x S5 has previously been shown to admit a deformation where the symmetry algebra is replaced by the associated quantum group. The case where q is real has been identified as a particular deformation of the Green-Schwarz sigma model. An interpretation of the case with q a root of unity has, until now, been lacking. We show that the Green-Schwarz sigma model admits a discrete deformation which can be viewed as a rather simple deformation of the F/F_V gauged WZW model, where F=PSU(2,2|4). The deformation parameter q is then a k-th root of unity where k is the level. The deformed theory has the same equations-of-motion as the Green-Schwarz sigma model but has a different symplectic structure. We show that the resulting theory is integrable and has just the right amount of kappa-symmetries that appear as a remnant of the fermionic part of the original gauge symmetry. This points to the existence of a fully consistent deformed string background.Comment: 23 pages, improved and expanded discussion of metric and B fiel

    The AdS(5)xS(5) Semi-Symmetric Space Sine-Gordon Theory

    Full text link
    The generalized symmetric space sine-Gordon theories are a series of 1+1-integrable field theories that are classically equivalent to superstrings on symmetric space spacetimes F/G. They are formulated in terms of a semi-symmetric space as a gauged WZW model with fermions and a potential term to deform it away from the conformal fixed point. We consider in particular the case of PSU(2,2|4)/Sp(2,2)xSp(4) which corresponds to AdS(5)xS(5). We argue that the infinite tower of conserved charges of these theories includes an exotic N=(8,8) supersymmetry that is realized in a mildy non-local way at the Lagrangian level. The supersymmetry is associated to a double central extension of the superalgebra psu(2|2)+psu(2|2) and includes a non-trivial R symmetry algebra corresponding to global gauge transformations, as well as 2-dimensional spacetime translations. We then explicitly construct soliton solutions and show that they carry an internal moduli superspace CP(2|1)xCP(2|1) with both bosonic and Grassmann collective coordinates. We show how to semi-classical quantize the solitons by writing an effective quantum mechanical system on the moduli space which takes the form of a co-adjoint orbit of SU(2|2)xSU(2|2). The spectrum consists of a tower of massive states in the short, or atypical, symmetric representations, just as the giant magnon states of the string world sheet theory, although here the tower is truncated.Comment: 39 pages, references adde

    Alleviating the non-ultralocality of coset sigma models through a generalized Faddeev-Reshetikhin procedure

    Get PDF
    The Faddeev-Reshetikhin procedure corresponds to a removal of the non-ultralocality of the classical SU(2) principal chiral model. It is realized by defining another field theory, which has the same Lax pair and equations of motion but a different Poisson structure and Hamiltonian. Following earlier work of M. Semenov-Tian-Shansky and A. Sevostyanov, we show how it is possible to alleviate in a similar way the non-ultralocality of symmetric space sigma models. The equivalence of the equations of motion holds only at the level of the Pohlmeyer reduction of these models, which corresponds to symmetric space sine-Gordon models. This work therefore shows indirectly that symmetric space sine-Gordon models, defined by a gauged Wess-Zumino-Witten action with an integrable potential, have a mild non-ultralocality. The first step needed to construct an integrable discretization of these models is performed by determining the discrete analogue of the Poisson algebra of their Lax matrices.Comment: 31 pages; v2: minor change

    Giant magnons of string theory in the lambda background

    Get PDF
    The analogues of giant magnon configurations are studied on the string world sheet in the lambda background. This is a discrete deformation of the AdS(5)xS(5) background that preserves the integrability of the world sheet theory. Giant magnon solutions are generated using the dressing method and their dispersion relation is found. This reduces to the usual dyonic giant magnon dispersion relation in the appropriate limit and becomes relativistic in another limit where the lambda model becomes the generalized sine-Gordon theory of the Pohlmeyer reduction. The scattering of giant magnons is then shown in the semi-classical limit to be described by the quantum S-matrix that is a quantum group deformation of the conventional giant magnon S-matrix. It is further shown that in the small g limit, a sector of the S-matrix is related to the XXZ spin chain whose spectrum matches the spectrum of magnon bound states.Comment: 53 pages, 6 figures, final version to appear in JHE

    The structure of non-abelian kinks

    Get PDF
    We consider a class of integrable quantum field theories in 1+1 dimensions whose classical equations have kink solutions with internal collective coordinates that transform under a non-abelian symmetry group. These generalised sine-Gordon theories have been shown to be related to the world sheet theory of the string in the AdS/CFT correspondence. We provide a careful analysis of the boundary conditions at spatial infinity complicated by the fact that they are defined by actions with a WZ term. We go on to describe the local and non-local charges carried by the kinks and end by showing that their structure is perfectly consistent with the exact factorizable S-matrices that have been proposed to describe these theories.Comment: 41 pages, more typos correcte
    corecore