Huygens-Fresnel Wave-Optics Simulation of Atmospheric Optical Turbulence and Reflective Speckle in CO

Abstract

The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. Two of these processes are atmospheric optical turbulence and reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. The effects of this phenomenon include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. The authors have previously developed a Huygens-Fresnel wave optics propagation code to separately simulate the effects of these two processes. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. In this work, the authors briefly review a description of the model including the limitations along with a brief summary of previous simulations of individual effects. The performance of the modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements and show good agreement. In addition, simulation studies have been performed to demonstrate the utility and limitations of the model. Examples presented include assessing the effects for different array sizes on model limitations and effects of varying propagation step sizes on intensity enhancements and intensity probability distributions in the receiver plane

    Similar works

    Full text

    thumbnail-image