242 research outputs found

    Metal-Organic Frameworks and Metal-Organic Cages – A Perspective

    Get PDF
    © 2020 Wiley-VCH GmbH The fields of metal-organic cages (MOCs) and metal-organic frameworks (MOFs) are both highly topical and continue to develop at a rapid pace. Despite clear synergies between the two fields, overlap is rarely observed. This article discusses the peculiarities and similarities of MOCs and MOFs in terms of synthetic strategies and approaches to system characterisation. The stability of both classes of material is compared, particularly in relation to their applications in guest storage and catalysis. Lastly, suggestions are made for opportunities for each field to learn and develop in partnership with the other

    End-Tagging of Ultra-Short Antimicrobial Peptides by W/F Stretches to Facilitate Bacterial Killing

    Get PDF
    BACKGROUND: Due to increasing resistance development among bacteria, antimicrobial peptides (AMPs), are receiving increased attention. Ideally, AMP should display high bactericidal potency, but low toxicity against (human) eukaryotic cells. Additionally, short and proteolytically stable AMPs are desired to maximize bioavailability and therapeutic versatility. METHODOLOGY AND PRINCIPAL FINDINGS: A facile approach is demonstrated for reaching high potency of ultra-short antimicrobal peptides through end-tagging with W and F stretches. Focusing on a peptide derived from kininogen, KNKGKKNGKH (KNK10) and truncations thereof, end-tagging resulted in enhanced bactericidal effect against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Through end-tagging, potency and salt resistance could be maintained down to 4-7 amino acids in the hydrophilic template peptide. Although tagging resulted in increased eukaryotic cell permeabilization at low ionic strength, the latter was insignificant at physiological ionic strength and in the presence of serum. Quantitatively, the most potent peptides investigated displayed bactericidal effects comparable to, or in excess of, that of the benchmark antimicrobial peptide LL-37. The higher bactericidal potency of the tagged peptides correlated to a higher degree of binding to bacteria, and resulting bacterial wall rupture. Analogously, tagging enhanced peptide-induced rupture of liposomes, particularly anionic ones. Additionally, end-tagging facilitated binding to bacterial lipopolysaccharide, both effects probably contributing to the selectivity displayed by these peptides between bacteria and eukaryotic cells. Importantly, W-tagging resulted in peptides with maintained stability against proteolytic degradation by human leukocyte elastase, as well as staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo for pig skin infected by S. aureus and E. coli. CONCLUSIONS/SIGNIFICANCE: End-tagging by hydrophobic amino acid stretches may be employed to enhance bactericidal potency also of ultra-short AMPs at maintained limited toxicity. The approach is of general applicability, and facilitates straightforward synthesis of hydrophobically modified AMPs without the need for post-peptide synthesis modifications

    SpeB of Streptococcus pyogenes Differentially Modulates Antibacterial and Receptor Activating Properties of Human Chemokines

    Get PDF
    BACKGROUND: CXC chemokines are induced by inflammatory stimuli in epithelial cells and some, like MIG/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11, are antibacterial for Streptococcus pyogenes. METHODOLOGY/PRINCIPAL FINDINGS: SpeB from S. pyogenes degrades a wide range of chemokines (i.e. IP10/CXCL10, I-TAC/CXCL11, PF4/CXCL4, GROalpha/CXCL1, GRObeta/CXCL2, GROgamma/CXCL3, ENA78/CXCL5, GCP-2/CXCL6, NAP-2/CXCL7, SDF-1/CXCL12, BCA-1/CXCL13, BRAK/CXCL14, SRPSOX/CXCL16, MIP-3alpha/CCL20, Lymphotactin/XCL1, and Fractalkine/CX3CL1), has no activity on IL-8/CXCL8 and RANTES/CCL5, partly degrades SRPSOX/CXCL16 and MIP-3alpha/CCL20, and releases a 6 kDa CXCL9 fragment. CXCL10 and CXCL11 loose receptor activating and antibacterial activities, while the CXCL9 fragment does not activate the receptor CXCR3 but retains its antibacterial activity. CONCLUSIONS/SIGNIFICANCE: SpeB destroys most of the signaling and antibacterial properties of chemokines expressed by an inflamed epithelium. The exception is CXCL9 that preserves its antibacterial activity after hydrolysis, emphasizing its role as a major antimicrobial on inflamed epithelium

    Thermodynamic study of interactions between ZnO and ZnO binding peptides using isothermal titration calorimetry

    Get PDF
    Whilst material specific peptide binding sequences have been identified using a combination of combinato-rial methods and computational modelling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering con-trol over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC) and alanine mutants of G-12 (G-12A6, G-12A11 and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endo-thermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different pep-tides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol and high adsorption affinity val-ues indicated the occurrence of favourable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions and with continued development, the knowledge gained may be instrumental for simplifi-cation of selection processes of organic molecules for the advancement of material synthesis and design

    β-Microseminoprotein Endows Post Coital Seminal Plasma with Potent Candidacidal Activity by a Calcium- and pH-Dependent Mechanism

    Get PDF
    The innate immune factors controlling Candida albicans are mostly unknown. Vulvovaginal candidiasis is common in women and affects approximately 70–75% of all women at least once. Despite the propensity of Candida to colonize the vagina, transmission of Candida albicans following sexual intercourse is very rare. This prompted us to investigate whether the post coital vaginal milieu contained factors active against C. albicans. By CFU assays, we found prominent candidacidal activity of post coital seminal plasma at both neutral and the acid vaginal pH. In contrast, normal seminal plasma did not display candidacidal activity prior to acidification. By antifungal gel overlay assay, one clearing zone corresponding to a protein band was found in both post coital and normal seminal plasma, which was subsequently identified as β-microseminoprotein. At neutral pH, the fungicidal activity of β-microseminoprotein and seminal plasma was inhibited by calcium. By NMR spectroscopy, amino acid residue E71 was shown to be critical for the calcium coordination. The acidic vaginal milieu unleashed the fungicidal activity by decreasing the inhibitory effect of calcium. The candidacidal activity of β-microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. A homologous fragment from porcine β-microseminoprotein demonstrated calcium-dependent fungicidal activity in a CFU assay, suggesting this may be a common feature for members of the β-microseminoprotein family. By electron microscopy, β-microseminoprotein was found to cause lysis of Candida. Liposome experiments demonstrated that β-microseminoprotein was active towards ergosterol-containing liposomes that mimic fungal membranes, offering an explanation for the selectivity against fungi. These data identify β-microseminoprotein as an important innate immune factor active against C. albicans and may help explain the low sexual transmission rate of Candida

    A Rapid and Sensitive Method for Measuring NAcetylglucosaminidase Activity in Cultured Cells

    Get PDF
    A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG) activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB) due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4- Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG), in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB), a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in enzyme replacement therapy, gene therapy, and combination therapies

    Pseudomonas aeruginosa Suppresses Host Immunity by Activating the DAF-2 Insulin-Like Signaling Pathway in Caenorhabditis elegans

    Get PDF
    Some pathogens have evolved mechanisms to overcome host immune defenses by inhibiting host defense signaling pathways and suppressing the expression of host defense effectors. We present evidence that Pseudomonas aeruginosa is able to suppress the expression of a subset of immune defense genes in the animal host Caenorhabditis elegans by activating the DAF-2/DAF-16 insulin-like signaling pathway. The DAF-2/DAF-16 pathway is important for the regulation of many aspects of organismal physiology, including metabolism, stress response, longevity, and immune function. We show that intestinal expression of DAF-16 is required for resistance to P. aeruginosa and that the suppression of immune defense genes is dependent on the insulin-like receptor DAF-2 and the FOXO transcription factor DAF-16. By visualizing the subcellular localization of DAF-16::GFP fusion protein in live animals during infection, we show that P. aeruginosa–mediated downregulation of a subset of immune genes is associated with the ability to translocate DAF-16 from the nuclei of intestinal cells. Suppression of DAF-16 is mediated by an insulin-like peptide, INS-7, which functions upstream of DAF-2. Both the inhibition of DAF-16 and downregulation of DAF-16–regulated genes, such as thn-2, lys-7, and spp-1, require the P. aeruginosa two-component response regulator GacA and the quorum-sensing regulators LasR and RhlR and are not observed during infection with Salmonella typhimurium or Enterococcus faecalis. Our results reveal a new mechanism by which P. aeruginosa suppresses host immune defense
    • …
    corecore