90 research outputs found

    Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and non-homologous end-joining

    Get PDF
    Using the rare-cutting endonuclease I-SceI we were able to demonstrate before that the repair of a single double-strand break (DSB) in a plant genome can be mutagenic due to insertions and deletions. However, during replication or due to irradiation several breaks might be induced simultaneously. To analyze the mutagenic potential of such a situation we established an experimental system in tobacco harboring two unlinked transgenes, each carrying an I-SceI site. After transient expression of I-SceI a kanamycin-resistance marker could be restored by joining two previously unlinked broken ends, either by homologous recombination (HR) or by nonhomologous end joining (NHEJ). Indeed, we were able to recover HR and NHEJ events with similar frequencies. Despite the fact that no selection was applied for joining the two other ends, the respective linkage could be detected in most cases tested, demonstrating that the respective exchanges were reciprocal. The frequencies obtained indicate that DSB-induced translocation is up to two orders of magnitude more frequent in somatic cells than ectopic gene conversion. Thus, DSB-induced reciprocal exchanges might play a significant role in plant genome evolution. The technique applied in this study may also be useful for the controlled exchange of unlinked sequences in plant genomes

    Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system

    Get PDF
    During the evolution of plant genomes, sequence inversions occurred repeatedly making the respective regions inaccessible for meiotic recombination and thus for breeding. Therefore, it is important to develop technologies that allow the induction of inversions within chromosomes in a directed and efficient manner. Using the Cas9 nuclease from Staphylococcus aureus (Sa Cas9), we were able to obtain scarless heritable inversions with high efficiency in the model plant Arabidopsis thaliana . Via deep sequencing, we defined the patterns of junction formation in wild‐type and in the non‐homologous end‐joining (NHEJ ) mutant ku70‐1 . Surprisingly, in plants deficient of KU 70, inversion induction is enhanced, indicating that KU 70 is required for tethering the local broken ends together during repair. However, in contrast to wild‐type, most junctions are formed by microhomology‐mediated NHEJ and thus are imperfect with mainly deletions, making this approach unsuitable for practical applications. Using egg‐cell‐specific expression of Cas9, we were able to induce heritable inversions at different genomic loci and at intervals between 3 and 18 kb, in the percentage range, in the T1 generation. By screening individual lines, inversion frequencies of up to the 10% range were found in T2. Most of these inversions had scarless junctions and were without any sequence change within the inverted region, making the technology attractive for use in crop plants. Applying our approach, it should be possible to reverse natural inversions and induce artificial ones to break or fix linkages between traits at will

    From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas

    Get PDF
    In the last years, tremendous progress has been achieved in the field of gene editing in plants. By the induction of single site-specific double-strand breaks (DSBs), the knockout of genes by non-homologous end joining has become routine in many plant species. Recently, the efficiency of inducing pre-planned mutations by homologous recombination has also been improved considerably. However, very little effort has been undertaken until now to achieve more complex changes in plant genomes by the simultaneous induction of several DSBs. Several reports have been published on the efficient induction of deletions. However, the induction of intrachromosomal inversions and interchromosomal recombination by the use of CRISPR/Cas has only recently been reported. In this review, we want to sum up these results and put them into context with regards to what is known about natural chromosome rearrangements in plants. Moreover, we review the recent progress in CRISPR/Cas-based mammalian chromosomal rearrangements, which might be inspiring for plant biologists. In the long run, the controlled restructuring of plant genomes should enable us to link or break linkage of traits at will, thus defining a new area of plant breeding

    Plant ribosome shunting in vitro

    Get PDF
    It has been proposed that cauliflower mosaic virus 35S RNA with its 600 nt long leader uses an unusual translation process (the translational shunt). A wheat germ in vitro translation assay was used to improve the study of this mechanism. Deletions, the introduction of stable stem-loop structures, and the inhibitory effect of antisense oligonucleotides on gene expression were used to determine the roles of various parts of the leader. It was found that the 5â€Č- and 3â€Č-ends of the leader are absolutely required for translation whereas the middle part is apparently dispensable. These results confirm the data already reported from transient expression experiments with protoplasts. However, the in vitro data suggest in contrast to protoplast experiments that only two relatively short regions at both ends, ∌100 nt each, are required. The in vitro system provides tools for further studying the shunt model at the molecular level and for examining the involvement of proteins in this mechanism. Shunting was also found to occur with the rice tungro bacilliform virus leader. As wheat is neither a host plant of cauliflower mosaic virus nor rice tungro bacilliform virus, the shunt seems to be host independent, a finding that deviates from earlier studies in protoplast

    BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana

    Get PDF
    BRCA1 is a well-known tumor suppressor protein in mammals, involved in multiple cellular processes such as DNA repair, chromosome segregation and chromatin remodeling. Interestingly, homologs of BRCA1 and several of its complex partners are also found in plants. As the respective mutants are viable, in contrast to mammalian mutants, detailed analyses of their biological role is possible. Here we demonstrate that the model plant Arabidopsis thaliana harbors two homologs of the mammalian BRCA1 interaction partner BRCC36, AtBRCC36A and AtBRCC36B. Mutants of both genes as well as the double mutants are fully fertile and show no defects in development. We were able to show that mutation of one of the homologs, AtBRCC36A, leads to a severe defect in intra- and interchromosomal homologous recombination (HR). A HR defect is also apparent in Atbrca1 mutants. As the Atbrcc36a/Atbrca1 double mutant behaves like the single mutants of AtBRCA1 and AtBRCC36A both proteins seem to be involved in a common pathway in the regulation of HR. AtBRCC36 is also epistatic to AtBRCA1 in DNA crosslink repair. Upon genotoxic stress, AtBRCC36A is transferred into the nucleus

    Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering

    Get PDF
    Chromosomal inversions are recurrent rearrangements that occur between different plant isolates or cultivars. Such inversions may underlie reproductive isolation in evolution and represent a major obstacle for classical breeding as no crossovers can be observed between inverted sequences on homologous chromosomes. The heterochromatic knob (hk4S) on chromosome 4 is the most well-known inversion of Arabidopsis. If a knob carrying accession such as Col-0 is crossed with a knob-less accession such as Ler-1, crossovers cannot be recovered within the inverted region. Our work shows that by egg-cell specific expression of the Cas9 nuclease from Staphylococcus aureus, a targeted reversal of the 1.1 Mb long hk4S-inversion can be achieved. By crossing Col-0 harbouring the rearranged chromosome 4 with Ler-1, meiotic crossovers can be restored into a region with previously no detectable genetic exchange. The strategy of somatic chromosome engineering for breaking genetic linkage has huge potential for application in plant breeding

    Analyzing Somatic DNA Repair in Arabidopsis Meiotic Mutants

    Get PDF
    Meiotic and somatic recombination share a common set of factors. Thus, the analysis of somatic DNA repair in meiotic mutant lines should be of special interest. Growth defects of mutant plants induced by specific genotoxins can thereby hint to DNA repair functions of the affected proteins. Here, we describe two kinds of approaches to characterize deficiencies in DNA repair in mutant lines of Arabidopsis thaliana, after genotoxin treatment
    • 

    corecore