803 research outputs found
Experimental and theoretical evidence for a hydrogen stabilized c 2x2 reconstruction of the P rich InP 001 surface
The formation of hydrogen bonds was investigated on the P rich InP 001 surface employing attenuated total reflection Fourier transform infrared spectroscopy, low energy electron diffraction, and total energy density functional theory calculations. Strong evidence was found for a c 2 2 2P 3H reconstruction with a higher hydrogen coverage than is characteristic for the metal organic chemical vapor deposition prepared hydrogen stabilized 2 2 2D 2H surface. The new surface reconstruction was formed upon exposure to atomic hydrogen. Complete transformation of all the metastable atomic configurations to form the new surface reconstruction was not achieved, since prior to this the surface began to deteriorate. The latter effect was monitored as the formation of In H bonds. Two observations, i.e., nearly complete screening of the infrared peaks for excitation with p polarized light and a pronounced redshift of P H peaks with increasing hydrogen coverage were attributed to dipole dipole interaction between the vibrating adsorbate
Interwire coupling for In(4x1) /Si(111) probed by surface transport
The In/Si(111) system reveals an anisotropy in the electrical conductivity and is a prototype system for atomic wires on surfaces. We use this system to study and tune the interwire interaction by adsorption of oxygen. Through rotational square four-tip transport measurements, both the parallel (σ||) and perpendicular (σ⊥) components are measured separately. The analysis of the I(V) curves reveals that σ⊥ is also affected by adsorption of oxygen, showing clearly an effective interwire coupling, in agreement with density-functional-theory-based calculations of the transmittance. In addition to these surface-state mediated transport channels, we confirm the existence of conducting parasitic space-charge layer channels and address the importance of substrate steps by performing the transport measurements of In phases grown on Si(111) mesa structures.DFG/FOR/170
Atomic size effects studied by transport in single silicide nanowires
Ultrathin metallic silicide nanowires with extremely high aspect ratios can be easily grown, e.g., by deposition of rare earth elements on semiconducting surfaces. These wires play a pivotal role in fundamental research and open intriguing perspectives for CMOS applications. However, the electronic properties of these one-dimensional systems are extremely sensitive to atomic-sized defects, which easily alter the transport characteristics. In this study, we characterized comprehensively TbSi2 wires grown on Si(100) and correlated details of the atomic structure with their electrical resistivities. Scanning tunneling microscopy (STM) as well as all transport experiments were performed in situ using a four-tip STM system. The measurements are complemented by local spectroscopy and density functional theory revealing that the silicide wires are electronically decoupled from the Si template. On the basis of a quasiclassical transport model, the size effect found for the resistivity is quantitatively explained in terms of bulk and surface transport channels considering details of atomic-scale roughness. Regarding future applications the full wealth of these robust nanostructures will emerge only if wires with truly atomically sharp interfaces can be reliably grown. © 2016 American Physical Society.DFG/FOR/170
Capillary Condensation and Interface Structure of a Model Colloid-Polymer Mixture in a Porous Medium
We consider the Asakura-Oosawa model of hard sphere colloids and ideal
polymers in contact with a porous matrix modeled by immobilized configurations
of hard spheres. For this ternary mixture a fundamental measure density
functional theory is employed, where the matrix particles are quenched and the
colloids and polymers are annealed, i.e. allowed to equilibrate. We study
capillary condensation of the mixture in a tiny sample of matrix as well as
demixing and the fluid-fluid interface inside a bulk matrix. Density profiles
normal to the interface and surface tensions are calculated and compared to the
case without matrix. Two kinds of matrices are considered: (i) colloid-sized
matrix particles at low packing fractions and (ii) large matrix particles at
high packing fractions. These two cases show fundamentally different behavior
and should both be experimentally realizable. Furthermore, we argue that
capillary condensation of a colloidal suspension could be experimentally
accessible. We find that in case (ii), even at high packing fractions, the main
effect of the matrix is to exclude volume and, to high accuracy, the results
can be mapped onto those of the same system without matrix via a simple
rescaling.Comment: 12 pages, 9 figures, submitted to PR
Tuning the conductivity along atomic chains by selective chemisorption
Adsorption of Au on vicinal Si(111) surfaces results in growth of long-range ordered metallic quantum wires. In this paper, we utilized site-specific and selective adsorption of oxygen to modify chemically the transport via different channels in the systems Si(553)-Au and Si(557)-Au. They were analyzed by electron diffraction and four-tip STM-based transport experiments. Modeling of the adsorption process by density functional theory shows that the adatoms and rest atoms on Si(557)-Au provide energetically favored adsorption sites, which predominantly alter the transport along the wire direction. Since this structural motif is missing on Si(553)-Au, the transport channels remain almost unaffected by oxidation. © 2017 American Physical Society.DFG/FOR/170
Thermodynamics with long-range interactions: from Ising models to black-holes
New methods are presented which enables one to analyze the thermodynamics of
systems with long-range interactions. Generically, such systems have entropies
which are non-extensive, (do not scale with the size of the system). We show
how to calculate the degree of non-extensivity for such a system. We find that
a system interacting with a heat reservoir is in a probability distribution of
canonical ensembles. The system still possesses a parameter akin to a global
temperature, which is constant throughout the substance. There is also a useful
quantity which acts like a {\it local temperatures} and it varies throughout
the substance. These quantities are closely related to counterparts found in
general relativity. A lattice model with long-range spin-spin coupling is
studied. This is compared with systems such as those encountered in general
relativity, and gravitating systems with Newtonian-type interactions. A
long-range lattice model is presented which can be seen as a black-hole analog.
One finds that the analog's temperature and entropy have many properties which
are found in black-holes. Finally, the entropy scaling behavior of a
gravitating perfect fluid of constant density is calculated. For weak
interactions, the entropy scales like the volume of the system. As the
interactions become stronger, the entropy becomes higher near the surface of
the system, and becomes more area-scaling.Comment: Corrects some typos found in published version. Title changed 22
pages, 2 figure
Barrier-free subsurface incorporation of 3d metal atoms into Bi(111) films
By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. It allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observed for topological insulators formed by substrate-stabilized Bi bilayers. © 2015 American Physical Society.DFG/SFB/616DFG/SPP/1601DFG/Pf238/3
Voltage-tunable singlet-triplet transition in lateral quantum dots
Results of calculations and high source-drain transport measurements are
presented which demonstrate voltage-tunable entanglement of electron pairs in
lateral quantum dots. At a fixed magnetic field, the application of a
judiciously-chosen gate voltage alters the ground-state of an electron pair
from an entagled spin singlet to a spin triplet.Comment: 8.2 double-column pages, 10 eps figure
Modeling of Photoionized Plasmas
In this paper I review the motivation and current status of modeling of
plasmas exposed to strong radiation fields, as it applies to the study of
cosmic X-ray sources. This includes some of the astrophysical issues which can
be addressed, the ingredients for the models, the current computational tools,
the limitations imposed by currently available atomic data, and the validity of
some of the standard assumptions. I will also discuss ideas for the future:
challenges associated with future missions, opportunities presented by improved
computers, and goals for atomic data collection.Comment: 17 pages, 8 figures, to appear in the proceedings of Xray2010,
Utrecht, the Netherlands, March 15-17 201
Quantum non-demolition (QND) modulation of quantum interference
We propose an experiment where quantum interference between two different
paths is modulated by means of a QND measurement on one or both the arm of the
interferometer. The QND measurement is achieved in a Kerr cell. We illustrate a
scheme for the realisation of this experiment and some further developments.Comment: accepted for publicatio
- …