6,876 research outputs found
Energy Dependence of the Delta Resonance: Chiral Dynamics in Action
There is an important connection between the low energy theorems of QCD and
the energy dependence of the Delta resonance in pi-N scattering, as well as the
closely related gamma^{*} N -> pi N reaction. The resonance shape is due not
only to the strong pi-N interaction in the p wave but the small interaction in
the s wave; the latter is due to spontaneous chiral symmetry breaking in QCD
(i.e. the Nambu-Goldstone nature of the pion). A brief overview of experimental
tests of chiral perturbation theory and chiral based models is presentedComment: 11 pages, 6 figures, Festschrift for S.N. yan
Collaborative research and development (R&D) for climate technology transfer and uptake in developing countries: Towards a needs driven approach
While international cooperation to facilitate the transfer and uptake of climate technologies in developing countries is an ongoing part of climate policy conversations, international collaborative R&D has received comparatively little attention. Collaborative R&D, however, could be a potentially important contributor to facilitating the transfer and uptake of climate technologies in developing countries. But the complexities of international collaborative R&D options and their distributional consequences have been given little attention to date. This paper develops a systematic approach to informing future empirical research and policy analysis on this topic. Building on insights from relevant literature and analysis of empirical data based on a sample of existing international climate technology R&D initiatives, three contributions are made. First, the paper analyses the coverage of existing collaborative R&D efforts in relation to climate technologies, highlighting some important concerns, such as a lack of coverage of lower-income countries or adaptation technologies. Second, it provides a starting point for further systematic research and policy thinking via the development of a taxonomic approach for analysing collaborative designs. Finally, it matches characteristics of R&D collaborations against developing countries’ climate technology needs to provide policymakers with guidance on how to Configure R&D collaborations to meet these needs
SPECULOOS exoplanet search and its prototype on TRAPPIST
One of the most significant goals of modern science is establishing whether
life exists around other suns. The most direct path towards its achievement is
the detection and atmospheric characterization of terrestrial exoplanets with
potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs),
i.e. very-low-mass stars and brown dwarfs with effective temperatures lower
than 2700 K, represent a unique opportunity to reach this goal within the next
decade. The potential of the transit method for detecting potentially habitable
Earth-sized planets around these objects is drastically increased compared to
Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby
UCD would be amenable for a thorough atmospheric characterization, including
the search for possible biosignatures, with near-future facilities such as the
James Webb Space Telescope. In this chapter, we first describe the physical
properties of UCDs as well as the unique potential they offer for the detection
of potentially habitable Earth-sized planets suitable for atmospheric
characterization. Then, we present the SPECULOOS ground-based transit survey,
that will search for Earth-sized planets transiting the nearest UCDs, as well
as its prototype survey on the TRAPPIST telescopes. We conclude by discussing
the prospects offered by the recent detection by this prototype survey of a
system of seven temperate Earth-sized planets transiting a nearby UCD,
TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H.
Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure
Effect of household-based drinking water chlorination on diarrhoea among children under five in Orissa, India: a double-blind randomised placebo-controlled trial.
BACKGROUND: Boiling, disinfecting, and filtering water within the home can improve the microbiological quality of drinking water among the hundreds of millions of people who rely on unsafe water supplies. However, the impact of these interventions on diarrhoea is unclear. Most studies using open trial designs have reported a protective effect on diarrhoea while blinded studies of household water treatment in low-income settings have found no such effect. However, none of those studies were powered to detect an impact among children under five and participants were followed-up over short periods of time. The aim of this study was to measure the effect of in-home water disinfection on diarrhoea among children under five. METHODS AND FINDINGS: We conducted a double-blind randomised controlled trial between November 2010 and December 2011. The study included 2,163 households and 2,986 children under five in rural and urban communities of Orissa, India. The intervention consisted of an intensive promotion campaign and free distribution of sodium dichloroisocyanurate (NaDCC) tablets during bi-monthly households visits. An independent evaluation team visited households monthly for one year to collect health data and water samples. The primary outcome was the longitudinal prevalence of diarrhoea (3-day point prevalence) among children aged under five. Weight-for-age was also measured at each visit to assess its potential as a proxy marker for diarrhoea. Adherence was monitored each month through caregiver's reports and the presence of residual free chlorine in the child's drinking water at the time of visit. On 20% of the total household visits, children's drinking water was assayed for thermotolerant coliforms (TTC), an indicator of faecal contamination. The primary analysis was on an intention-to-treat basis. Binomial regression with a log link function and robust standard errors was used to compare prevalence of diarrhoea between arms. We used generalised estimating equations to account for clustering at the household level. The impact of the intervention on weight-for-age z scores (WAZ) was analysed using random effect linear regression. Over the follow-up period, 84,391 child-days of observations were recorded, representing 88% of total possible child-days of observation. The longitudinal prevalence of diarrhoea among intervention children was 1.69% compared to 1.74% among controls. After adjusting for clustering within household, the prevalence ratio of the intervention to control was 0.95 (95% CI 0.79-1.13). The mean WAZ was similar among children of the intervention and control groups (-1.586 versus -1.589, respectively). Among intervention households, 51% reported their child's drinking water to be treated with the tablets at the time of visit, though only 32% of water samples tested positive for residual chlorine. Faecal contamination of drinking water was lower among intervention households than controls (geometric mean TTC count of 50 [95% CI 44-57] per 100 ml compared to 122 [95% CI 107-139] per 100 ml among controls [p<0.001] [n = 4,546]). CONCLUSIONS: Our study was designed to overcome the shortcomings of previous double-blinded trials of household water treatment in low-income settings. The sample size was larger, the follow-up period longer, both urban and rural populations were included, and adherence and water quality were monitored extensively over time. These results provide no evidence that the intervention was protective against diarrhoea. Low compliance and modest reduction in water contamination may have contributed to the lack of effect. However, our findings are consistent with other blinded studies of similar interventions and raise additional questions about the actual health impact of household water treatment under these conditions. TRIAL REGISTRATION: ClinicalTrials.govNCT01202383 Please see later in the article for the Editors' Summary
The Cosmic Infrared Background: Measurements and Implications
The cosmic infrared background records much of the radiant energy released by
processes of structure formation that have occurred since the decoupling of
matter and radiation following the Big Bang. In the past few years, data from
the Cosmic Background Explorer mission provided the first measurements of this
background, with additional constraints coming from studies of the attenuation
of TeV gamma-rays. At the same time there has been rapid progress in resolving
a significant fraction of this background with the deep galaxy counts at
infrared wavelengths from the Infrared Space Observatory instruments and at
submillimeter wavelengths from the Submillimeter Common User Bolometer Array
instrument. This article reviews the measurements of the infrared background
and sources contributing to it, and discusses the implications for past and
present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of
Astronomy and Astrophysics, 2001, Vol. 3
Transitions/relaxations in polyester adhesive/PET system
The correlations between the transitions and the dielectric relaxation processes of the oriented poly(ethylene terephthalate) (PET) pre-impregnated of the polyester thermoplastic adhesive have been investigated by differential scanning calorimetry (DSC) and dynamic dielectric spectroscopy (DDS). The thermoplastic polyester adhesive and the oriented PET films have been studied as reference samples. This study evidences that the adhesive chain segments is responsible for the physical structure evolution in the PET-oriented film. The transitions and dielectric relaxation modes’ evolutions in the glass transition region appear characteristic of the interphase between adhesive and PET film, which is discussed in terms of molecular mobility. The storage at room temperature of the adhesive tape involves the heterogeneity of the physical structure, characterized by glass transition dissociation. Thus, the correlation between the transitions and the dielectric relaxation processes evidences a segregation of the amorphous phases. Therefore, the physical structure and the properties of the material have been linked to the chemical characteristics
On RAF Sets and Autocatalytic Cycles in Random Reaction Networks
The emergence of autocatalytic sets of molecules seems to have played an
important role in the origin of life context. Although the possibility to
reproduce this emergence in laboratory has received considerable attention,
this is still far from being achieved. In order to unravel some key properties
enabling the emergence of structures potentially able to sustain their own
existence and growth, in this work we investigate the probability to observe
them in ensembles of random catalytic reaction networks characterized by
different structural properties. From the point of view of network topology, an
autocatalytic set have been defined either in term of strongly connected
components (SCCs) or as reflexively autocatalytic and food-generated sets
(RAFs). We observe that the average level of catalysis differently affects the
probability to observe a SCC or a RAF, highlighting the existence of a region
where the former can be observed, whereas the latter cannot. This parameter
also affects the composition of the RAF, which can be further characterized
into linear structures, autocatalysis or SCCs. Interestingly, we show that the
different network topology (uniform as opposed to power-law catalysis systems)
does not have a significantly divergent impact on SCCs and RAFs appearance,
whereas the proportion between cleavages and condensations seems instead to
play a role. A major factor that limits the probability of RAF appearance and
that may explain some of the difficulties encountered in laboratory seems to be
the presence of molecules which can accumulate without being substrate or
catalyst of any reaction.Comment: pp 113-12
Hysteresis phenomenon in turbulent convection
Coherent large-scale circulations of turbulent thermal convection in air have
been studied experimentally in a rectangular box heated from below and cooled
from above using Particle Image Velocimetry. The hysteresis phenomenon in
turbulent convection was found by varying the temperature difference between
the bottom and the top walls of the chamber (the Rayleigh number was changed
within the range of ). The hysteresis loop comprises the one-cell
and two-cells flow patterns while the aspect ratio is kept constant (). We found that the change of the sign of the degree of the anisotropy of
turbulence was accompanied by the change of the flow pattern. The developed
theory of coherent structures in turbulent convection (Elperin et al. 2002;
2005) is in agreement with the experimental observations. The observed coherent
structures are superimposed on a small-scale turbulent convection. The
redistribution of the turbulent heat flux plays a crucial role in the formation
of coherent large-scale circulations in turbulent convection.Comment: 10 pages, 9 figures, REVTEX4, Experiments in Fluids, 2006, in pres
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
- …
