8,049 research outputs found

    The dynamics of CO production from the photolysis of acetone across the whole S <inf>1</inf>← S <inf>0</inf>absorption spectrum: Roaming and triple fragmentation pathways

    Full text link
    The unimolecular photodissociation dynamics of acetone spanning the entire S1 ← S0 absorption spectrum have been reinvestigated, with a focus on mechanisms that produce CO. At excitation wavelengths of λ > 305.8 nm, all photoproducts are formed on the S0 state after internal conversion. A roaming mechanism forming C2H6 + CO is active in the window λ = 311.2-305.8 nm. From λ = 305.8 to 262 nm, little or no CO is produced with the photochemistry dominated by the Norrish-type I C-C bond cleavage on the lowest excited triplet state, T1. At higher energy (λ < 262 nm), an increasing fraction of CH3CO radicals from the primary reaction have sufficient internal energy to spontaneously decompose to CH3 + CO. A new model is presented to account for the kinetic energy distribution of the secondary CH3 radical, allowing us to determine the height of the energetic barrier to CH3CO decomposition as 68 ± 4 kJ mol-1, which lies midway between previous measurements. The fraction of CO from triple fragmentation rises smoothly from 260 to 248 nm. We see no evidence of the return of roaming, or any other S0 reaction, in this higher energy region of the first electronic absorption band

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Three People Can Synchronize as Coupled Oscillators during Sports Activities

    Get PDF
    We experimentally investigated the synchronized patterns of three people during sports activities and found that the activity corresponded to spatiotemporal patterns in rings of coupled biological oscillators derived from symmetric Hopf bifurcation theory, which is based on group theory. This theory can provide catalogs of possible generic spatiotemporal patterns irrespective of their internal models. Instead, they are simply based on the geometrical symmetries of the systems. We predicted the synchronization patterns of rings of three coupled oscillators as trajectories on the phase plane. The interactions among three people during a 3 vs. 1 ball possession task were plotted on the phase plane. We then demonstrated that two patterns conformed to two of the three patterns predicted by the theory. One of these patterns was a rotation pattern (R) in which phase differences between adjacent oscillators were almost 2π/3. The other was a partial anti-phase pattern (PA) in which the two oscillators were anti-phase and the third oscillator frequency was dead. These results suggested that symmetric Hopf bifurcation theory could be used to understand synchronization phenomena among three people who communicate via perceptual information, not just physically connected systems such as slime molds, chemical reactions, and animal gaits. In addition, the skill level in human synchronization may play the role of the bifurcation parameter

    Deep Impact Mission to Tempel 1 Favours New Explosive Cosmogony of Comets

    Get PDF
    The assumption that short-period (SP) comets are fragments of massive icy envelopes of Ganymede-like bodies saturated by products of ice electrolysis that underwent global explosions provides a plausible explanation of all known manifestations of comets, including the jet character of outflows, the presence of ions in the vicinity of the nucleus, the bursts and splitting of cometary nuclei, etc., with solar radiation initiating burning of the products of electrolysis in the nucleus. As shown persuasively by numerical simulation carried out in hydrodynamic approximation, the shock wave initiated by the Deep Impact (DI) impactor in the cometary ice saturated originally by the electrolysis products 2H2 + O2 is capable of activating under certain conditions exothermal reactions (of the type O2 + H2 + organics = H2O + CO + HCN + other products of incomplete burning of organics including its light and heavy pyrolyzed compounds, soot, etc.), which will slow down shock wave damping (forced detonation) and increase many times the energy release. As a result, the measured energetics of ejections and outflows from the crater have to exceed the DI energetics. Analysis of different clusters of the DI experiment data confirms these conclusions and expectations and thus it favours the planetary origin of comets.Comment: 21 pages incluging 3 figure

    Timescales of Massive Human Entrainment

    Get PDF
    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend concepts of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment - as expressed by the content and patterns of hundreds of thousands of messages on Twitter - during the 2012 US presidential debates. By time locking these data sources, we quantify the impact of the unfolding debate on human attention. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient moments in the debate: Mentions in social media start within 5-10 seconds after the moment; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment.Comment: 20 pages, 7 figures, 6 tables, 4 supplementary figures. 2nd version revised according to peer reviewers' comments: more detailed explanation of the methods, and grounding of the hypothese

    Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Orton et al.BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. RESULTS: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. CONCLUSION: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.This work was funded by the Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and Cyclacel
    corecore