5,016 research outputs found
Valley spin polarization by using the extraordinary Rashba effect on silicon
The addition of the valley degree of freedom to a two-dimensional spin-polarized electronic system provides the opportunity to multiply the functionality of next-generation devices. So far, however, such devices have not been realized due to the difficulty to polarize the valleys, which is an indispensable step to activate this degree of freedom. Here we show the formation of 100% spin-polarized valleys by a simple and easy way using the Rashba effect on a system with C-3 symmetry. This polarization, which is much higher than those in ordinary Rashba systems, results in the valleys acting as filters that can suppress the backscattering of spin-charge. The present system is formed on a silicon substrate, and therefore opens a new avenue towards the realization of silicon spintronic devices with high efficiency.X114334Nsciescopu
Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance
The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output
Pre-cooling for endurance exercise performance in the heat: a systematic review.
PMCID: PMC3568721The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/166.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Endurance exercise capacity diminishes under hot environmental conditions. Time to exhaustion can be increased by lowering body temperature prior to exercise (pre-cooling). This systematic literature review synthesizes the current findings of the effects of pre-cooling on endurance exercise performance, providing guidance for clinical practice and further research
Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome
Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE
playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes
Strong-coupling expansion and effective hamiltonians
When looking for analytical approaches to treat frustrated quantum magnets,
it is often very useful to start from a limit where the ground state is highly
degenerate. This chapter discusses several ways of deriving {effective
Hamiltonians} around such limits, starting from standard {degenerate
perturbation theory} and proceeding to modern approaches more appropriate for
the derivation of high-order effective Hamiltonians, such as the perturbative
continuous unitary transformations or contractor renormalization. In the course
of this exposition, a number of examples taken from the recent literature are
discussed, including frustrated ladders and other dimer-based Heisenberg models
in a field, as well as the mapping between frustrated Ising models in a
transverse field and quantum dimer models.Comment: To appear as a chapter in "Highly Frustrated Magnetism", Eds. C.
Lacroix, P. Mendels, F. Mil
Ordering variable for parton showers
The parton splittings in a parton shower are ordered according to an ordering
variable, for example the transverse momentum of the daughter partons relative
to the direction of the mother, the virtuality of the splitting, or the angle
between the daughter partons. We analyze the choice of the ordering variable
and conclude that one particular choice has the advantage of factoring softer
splittings from harder splittings graph by graph in a physical gauge.Comment: 28 pages, 5 figure
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
September 2010, Springer Verlag, in pres
Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway
This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Orton et al.BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. RESULTS: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. CONCLUSION: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.This work was funded by the Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and Cyclacel
Stochastic population growth in spatially heterogeneous environments
Classical ecological theory predicts that environmental stochasticity
increases extinction risk by reducing the average per-capita growth rate of
populations. To understand the interactive effects of environmental
stochasticity, spatial heterogeneity, and dispersal on population growth, we
study the following model for population abundances in patches: the
conditional law of given is such that when is small the
conditional mean of is approximately , where and are the abundance and per
capita growth rate in the -th patch respectivly, and is the
dispersal rate from the -th to the -th patch, and the conditional
covariance of and is approximately . We show for such a spatially extended population that if
is the total population abundance, then ,
the vector of patch proportions, converges in law to a random vector
as , and the stochastic growth rate equals the space-time average per-capita growth rate
\sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the
space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i
Y_\infty^j] experienced by the population. We derive analytic results for the
law of , find which choice of the dispersal mechanism produces an
optimal stochastic growth rate for a freely dispersing population, and
investigate the effect on the stochastic growth rate of constraints on
dispersal rates. Our results provide fundamental insights into "ideal free"
movement in the face of uncertainty, the persistence of coupled sink
populations, the evolution of dispersal rates, and the single large or several
small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure
Toward a Unified Genetic Map of Higher Plants, Transcending the Monocot-Dicot Divergence
Closely related (confamilial) genera often retain large chromosomal tracts in which gene order is colinear, punctuated by structural mutations such as inversions and translocations 1. To explore the possibility that conservation of gene order might extrapolate to more distantly related taxa, we first estimated an average structural mutation rate. Nine pairs of taxa, for which there exist both comparative genetic maps and plausible estimates of divergence time, showed an average of0.14 (±0.06) structural mutations per chromosome per million years of divergence (Myr; Table 1). This value is offered as a first approximation, acknowledging that refined comparative data and/or divergence estimates may impel revision
- …
