8,151 research outputs found

    Longitudinal evaluation, acceptability and long-term retention of knowledge on a horizontally integrated organic and functional systems course

    Get PDF
    Undergraduate medical education is moving from traditional disciplinary basic science courses into more integrated curricula. Integration models based on organ systems originated in the 1950s, but few longitudinal studies have evaluated their effectiveness. This article outlines the development and implementation of the Organic and Functional Systems (OFS) courses at the University of Minho in Portugal, using evidence collected over 10 years. It describes the organization of content, student academic performance and acceptability of the courses, the evaluation of preparedness for future courses and the retention of knowledge on basic sciences. Students consistently rated the OFS courses highly. Physician tutors in subsequent clinical attachments considered that students were appropriately prepared. Performance in the International Foundations of Medicine examination of a self-selected sample of students revealed similar performances in basic science items after the last OFS course and 4 years later, at the moment of graduation. In conclusion, the organizational and pedagogical approaches of the OFS courses achieve high acceptability by students and result in positive outcomes in terms of preparedness for subsequent training and long-term retention of basic science knowledge

    A new purple sulfur bacterium from saline littoral sediments, Thiorhodotvibrio winogradskyi gen. nov. and sp. nov.

    Get PDF
    Two strains of a new purple sulfur bacterium were isolated in pure culture from the littoral sediment of a saline lake (Mahoney Lake, Canada) and a marine microbial mat from the North Sea island of Mellum, respectively. Single cells were vibrioid-to spirilloid-shaped and motile by means of single polar flagella. Intracellular photosynthetic membranes were of the vesicular type. As photosynthetic pigments, bacteriochlorophyll a and the carotenoids lycopene, rhodopin, anhydrorhodovibrin, rhodovibrin and spirilloxanthin were present. Hydrogen sulfide and elemental sulfur were used under anoxic conditions for phototrophic growth. In addition one strain (06511) used thiosulfate. Carbon dioxide, acetate and pyruvate were utilized by both strains as carbon sources. Depending on the strain propionate, succinate, fumarate, malate, tartrate, malonate, glycerol or peptone may additionally serve as carbon sources in the light. Optimum growth rates were obtained at pH 7.2, 33 °C, 50 mol m-2 s-1 intensity of daylight fluorescent tubes and a salinity of 2.2–3.2% NaCl. During growth on sulfide, up to ten small sulfur globules were formed inside the cells. The strains grew microaerophilic in the dark and exhibited high specific respiration rates. No vitamins were required for growth. The DNA base composition was 61.0–62.4 mol% G+C. The newly isolated bacterium belongs to the family chromatiaceae and is described as a member of a new genus and species, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. with the type strain SSP1, DSM No. 6702

    Application of the x-ray measurement model to image processing of x-ray radiographs

    Get PDF
    A computational model has been developed at which simulates the film response to the interaction of x-rays with a sample[1,2]. By using a CAD model as a virtual part, film densities of the radiograph are predicted. The number of photons which reach the film is based on the thickness of the part, part geometry, and the material absorption coefficient. Also taken into consideration are the x-ray beam characteristics, film properties, and the experimental configuration. The model generated images can vary in size and resolution, depending on the user chosen parameters. Noise is calculated using a Gaussian noise distribution and adjusted for the film type. The result of this simulation is a two-dimensional numerically generated digital image, which represents a radiograph of the part. This result can be used to analyze the flaws in an actual radiograph with the same set-up and exposure parameters

    On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model

    Get PDF
    During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer

    Effect of reminders on mitigating participation bias in a case-control study

    Get PDF
    BACKGROUND: Researchers commonly employ strategies to increase participation in health studies. These include use of incentives and intensive reminders. There is, however, little evidence regarding the quantitative effect that such strategies have on study results. We present an analysis of data from a case-control study of Campylobacter enteritis in England to assess the usefulness of a two-reminder strategy for control recruitment. METHODS: We compared sociodemographic characteristics of participants and non-participants, and calculated odds ratio estimates for a wide range of risk factors by mailing wave. RESULTS: Non-participants were more often male, younger and from more deprived areas. Among participants, early responders were more likely to be female, older and live in less deprived areas, but despite these differences, we found little evidence of a systematic bias in the results when using data from early reponders only. CONCLUSIONS: We conclude that the main benefit of using reminders in our study was the gain in statistical power from a larger sample size

    Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system

    Get PDF
    © 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system

    A precision study of the fine tuning in the DiracNMSSM

    Get PDF
    Recently the DiracNMSSM has been proposed as a possible solution to reduce the fine tuning in supersymmetry. We determine the degree of fine tuning needed in the DiracNMSSM with and without non-universal gaugino masses and compare it with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed parameter regions we perform a precise calculation of the Higgs mass. In addition, we include the limits from direct SUSY searches and dark matter abundance. We find that both models are comparable in terms of fine tuning, with the minimal fine tuning in the GNMSSM slightly smaller.Comment: 20 pages + appendices, 10 figure

    Substrate Binding Mode and Its Implication on Drug Design for Botulinum Neurotoxin A

    Get PDF
    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 Å and 1.6 Å, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5′ sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1′-Arg198, occupies the S1′ site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2′ subsite is formed by Arg363, Asn368 and Asp370, while S3′ subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4′-Lys201 makes hydrogen bond with Gln162. P5′-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer
    corecore