57,204 research outputs found
Two-dimensional frustrated spin systems in high magnetic fields
We discuss our numerical results on the properties of the S = 1/2 frustrated
J1-J2 Heisenberg model on a square lattice as a function of temperature and
frustration angle phi = atan(J2/J1) in an applied magnetic field. We cover the
full phase diagram of the model in the range -pi <= phi <= pi. The discussion
includes the parameter dependence of the saturation field itself, and addresses
the instabilities associated with it. We also discuss the magnetocaloric effect
of the model and show how it can be used to uniquely determine the effective
interaction constants of the compounds which were investigated experimentally.Comment: 4 pages, 5 figures, proceedings of RHMF 200
An experimental and analytical study of visual detection in a spacecraft environment, 1 July 1968 - 1 July 1969
Predicting star magnitude which can be seen with naked eye or sextant through spacecraft windo
Emittance measurement study
Directional spectral emittance of black body cavitie
Spin correlations and exchange in square lattice frustrated ferromagnets
The J1-J2 model on a square lattice exhibits a rich variety of different
forms of magnetic order that depend sensitively on the ratio of exchange
constants J2/J1. We use bulk magnetometry and polarized neutron scattering to
determine J1 and J2 unambiguously for two materials in a new family of vanadium
phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have
ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground
state is reduced, and the diffuse magnetic scattering is enhanced, as the
predicted bond-nematic region of the phase diagram is approached.Comment: 4 pages, 4 figure
Theoretical Model for the Semimetal Yb_4As_3
We present a model which can explain semiquantitatively a number of the
unusual properties of \mbox{YbAs}. The structural phase transition at
T_{\text{c}}\simeq300\,\mbox{K} is described by a band Jahn-Teller effect of
correlated electrons and is interpreted as a charge ordering of the Yb ions.
The low carrier concentration in the low-temperature phase follows from the
strong electron correlations of the 4f-holes on the Yb sites and can be viewed
as self-doping of charge-ordered chains. The observed heavy-fermion behaviour
is on a scale of T^\ast\simeq50\,\mbox{K} and is due to spinon-like
excitations in the Yb-chains. The appearance of a second low-energy
scale around 0.2\,K is due to the Fermi energy of the low-density carriers.Comment: 7 pages, REVTeX, 1 Postscript-figure separatel
Fragmentation of spherical radioactive heavy nuclei as a novel probe of transient effects in fission
Peripheral collisions with radioactive heavy-ion beams at relativistic
energies are discussed as an innovative approach for probing the transient
regime experienced by fissile systems evolving towards quasi-equilibrium. A
dedicated experiment using the advanced technical installations of GSI,
Darmstadt, permitted to realize ideal conditions for the investigation of
relaxation effects in the meta-stable well. Combined with a highly sensitive
experimental signature, it provides a measure of the transient effects with
respect to the flux over the fission barrier. Within a two-step reaction
process, 45 proton-rich unstable spherical isotopes produced by
projectile-fragmentation of a stable 238U beam have been used as secondary
projectiles. The fragmentation of the radioactive projectiles on lead results
in nearly spherical compound nuclei which span a wide range in excitation
energy and fissility. The decay of these excited systems by fission is studied
with a dedicated set-up which permits the detection of both fission products in
coincidence and the determination of their atomic numbers with high resolution.
The width of the fission-fragment nuclear charge distribution is shown to be
specifically sensitive to pre-saddle transient effects and is used to establish
a clock for the passage of the saddle point. The comparison of the experimental
results with model calculations points to a fission delay of (3.3+/-0.7).10-21s
for initially spherical compound nuclei, independent of excitation energy and
fissility. This value suggests a nuclear dissipation strength at small
deformation of (4.5+/-0.5).1021s-1. The very specific combination of the
physics and technical equipment exploited in this work sheds light on previous
controversial conclusions.Comment: 38 pages, 15 figure
Mixtures of Charged Colloid and Neutral Polymer: Influence of Electrostatic Interactions on Demixing and Interfacial Tension
The equilibrium phase behavior of a binary mixture of charged colloids and
neutral, non-adsorbing polymers is studied within free-volume theory. A model
mixture of charged hard-sphere macroions and ideal, coarse-grained,
effective-sphere polymers is mapped first onto a binary hard-sphere mixture
with non-additive diameters and then onto an effective Asakura-Oosawa model [S.
Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is
defined by a single dimensionless parameter -- the ratio of the polymer
diameter to the effective colloid diameter. For high salt-to-counterion
concentration ratios, a free-volume approximation for the free energy is used
to compute the fluid phase diagram, which describes demixing into colloid-rich
(liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic
interactions shifts the demixing binodal toward higher polymer concentration,
stabilizing the mixture. The enhanced stability is attributed to a weakening of
polymer depletion-induced attraction between electrostatically repelling
macroions. Comparison with predictions of density-functional theory reveals a
corresponding increase in the liquid-vapor interfacial tension. The predicted
trends in phase stability are consistent with observed behavior of
protein-polysaccharide mixtures in food colloids.Comment: 16 pages, 5 figure
Hybrid Deterministic-Stochastic Methods for Data Fitting
Many structured data-fitting applications require the solution of an
optimization problem involving a sum over a potentially large number of
measurements. Incremental gradient algorithms offer inexpensive iterations by
sampling a subset of the terms in the sum. These methods can make great
progress initially, but often slow as they approach a solution. In contrast,
full-gradient methods achieve steady convergence at the expense of evaluating
the full objective and gradient on each iteration. We explore hybrid methods
that exhibit the benefits of both approaches. Rate-of-convergence analysis
shows that by controlling the sample size in an incremental gradient algorithm,
it is possible to maintain the steady convergence rates of full-gradient
methods. We detail a practical quasi-Newton implementation based on this
approach. Numerical experiments illustrate its potential benefits.Comment: 26 pages. Revised proofs of Theorems 2.6 and 3.1, results unchange
Colloid-Induced Polymer Compression
We consider a model mixture of hard colloidal spheres and non-adsorbing
polymer chains in a theta solvent. The polymer component is modelled as a
polydisperse mixture of effective spheres, mutually noninteracting but excluded
from the colloids, with radii that are free to adjust to allow for
colloid-induced compression. We investigate the bulk fluid demixing behaviour
of this model system using a geometry-based density-functional theory that
includes the polymer size polydispersity and configurational free energy,
obtained from the exact radius-of-gyration distribution for an ideal
(random-walk) chain. Free energies are computed by minimizing the free energy
functional with respect to the polymer size distribution. With increasing
colloid concentration and polymer-to-colloid size ratio, colloidal confinement
is found to increasingly compress the polymers. Correspondingly, the demixing
fluid binodal shifts, compared to the incompressible-polymer binodal, to higher
polymer densities on the colloid-rich branch, stabilizing the mixed phase.Comment: 14 pages, 4 figure
Effect of organic, low-input and conventional production systems on yield and diseases in winter barley
The effect of organic, low-input and conventional management practices on barley yield and disease incidence was assessed in field trials over two years. Conventional fertility management (based on mineral fertiliser applications) and conventional crop protection (based on chemosynthetic pesticides) significantly increased the yield of winter barley as compared to organic fertility and crop protection regimes. Severity of leaf blotch (Rhynchosporium secalis) was highest under organic fertility and crop protection management and was correlated inversely with yield. For mildew (Erysiphe graminis), an interaction between fertility management and crop protection was detected. Conventional crop protection reduced severity of the disease, only under conventional fertility management. Under organic fertility management, incidence of mildew was low and application of synthetic pesticides in “low input” production systems had no significant effect on disease severity
- …