5,924 research outputs found

    Nanoporous Solid-State Sensitization of Triplet Fusion Upconversion

    Full text link
    Photochemical upconversion of green to blue light is demonstrated in thin films of nanostructured alumina stained with a metalloporphyrin sensitizer. The pores of the structure are filled with emitter molecules in a concentrated solution, allowing efficient upconversion within the solid-state scaffold. The photon generation quantum yield is measured to be 9.4%, which is nearly 40% of what is possible with a diphenylanthracene emitter. These results show that high-efficiency upconversion is possible with solid-state sensitization within a nanostructured thin-film architecture

    Exciton Dissociation, Charge Transfer, and Exciton Trapping at the MoS<inf>2</inf>/Organic Semiconductor Interface

    Full text link
    Hybrid inorganic-organic semiconducting devices consisting of monolayer transition metal dichalcogenides (TMDs) represent a new frontier in advanced optoelectronics due to their high radiative efficiencies and capacity to form flexible p-n junctions with inherent device tunability. However, understanding how excitons and charges behave at the interface between TMDs and organic systems, a key requirement to advance the field, remains underexplored. Herein, a heterostructure consisting of a highly conjugated organic system, 9-(2-naphthyl)-10-[4-(1-naphthyl)phenyl]anthracene (ANNP), and monolayer molybdenum disulfide (MoS2) on quartz is elucidated via transient absorption and photoluminescence spectroscopies. Upon direct excitation of MoS2at 532 nm, hole transfer to ANNP of ∼5 ps and a charge separation time constant of ∼2.4 ns are observed. When the sample is excited at 400 nm (where both ANNP and MoS2absorb), a self-trapped exciton within ANNP is formed. The emission of the self-trapped exciton is long-lived compared to the exciton lifetime of ANNP, decaying within 20 ns. The trapping of the ANNP exciton is caused by structural deformities of the ANNP crystal lattice when grown on MoS2, which are removed by annealing the film. These observations highlight how exciton dissociation and charge transfer dominate at the interface of ANNP and MoS2whereas the exciton dynamics within ANNP are prone to the formation of trap states brought about by crystal defects within the film. These insights will aid in future developments of TMD-containing optoelectronics

    Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass

    Get PDF
    To obtain the best possible net energy balance of the bioethanol production the biomass raw materials used need to be produced with limited use of non-renewable fossil fuels. Intercropping strategies are known to maximize growth and productivity by including more than one species in the crop stand, very often with legumes as one of the components. In the present study clover-grass is undersown in a traditional wheat crop. Thereby, it is possible to increase input of symbiotic fixation of atmospheric nitrogen into the cropping systems and reduce the need for fertilizer applications. Furthermore, when using such wheat and clover-grass mixtures as raw material, addition of urea and other fermentation nutrients produced from fossil fuels can be reduced in the whole ethanol manufacturing chain. Using second generation ethanol technology mixtures of relative proportions of wheat straw and clover-grass (15:85, 50:50, and 85:15) were pretreated by wet oxidation. The results showed that supplementing wheat straw with clover-grass had a positive effect on the ethanol yield in simultaneous saccharification and fermentation experiments, and the effect was more pronounced in inhibitory substrates. The highest ethanol yield (80% of theoretical) was obtained in the experiment with high fraction (85%) of clover-grass. In order to improve the sugar recovery of clover-grass, it should be separated into a green juice (containing free sugars, fructan, amino acids, vitamins and soluble minerals) for direct fermentation and a fibre pulp for pretreatment together with wheat straw. Based on the obtained results a decentralized biorefinery concept for production of biofuel is suggested emphasizing sustainability, localness, and recycling principle

    Singlet fission and tandem solar cells reduce thermal degradation and enhance lifespan

    Full text link
    The economic value of a photovoltaic installation depends upon both its lifespan and power conversion efficiency. Progress toward the latter includes mechanisms to circumvent the Shockley-Queisser limit, such as tandem designs and multiple exciton generation (MEG). Here we explain how both silicon tandem and MEG-enhanced silicon cell architectures result in lower cell operating temperatures, increasing the device lifetime compared to standard c-Si cells. Also demonstrated are further advantages from MEG enhanced silicon cells: (i) the device architecture can completely circumvent the need for current-matching; and (ii) upon degradation, tetracene, a candidate singlet fission (a form of MEG) material, is transparent to the solar spectrum. The combination of (i) and (ii) mean that the primary silicon device will continue to operate with reasonable efficiency even if the singlet fission layer degrades. The lifespan advantages of singlet fission enhanced silicon cells, from a module perspective, are compared favorably alongside the highly regarded perovskite/silicon tandem and conventional c-Si modules

    Lattice worldline representation of correlators in a background field

    Get PDF
    We use a discrete worldline representation in order to study the continuum limit of the one-loop expectation value of dimension two and four local operators in a background field. We illustrate this technique in the case of a scalar field coupled to a non-Abelian background gauge field. The first two coefficients of the expansion in powers of the lattice spacing can be expressed as sums over random walks on a d-dimensional cubic lattice. Using combinatorial identities for the distribution of the areas of closed random walks on a lattice, these coefficients can be turned into simple integrals. Our results are valid for an anisotropic lattice, with arbitrary lattice spacings in each direction.Comment: 54 pages, 14 figure

    An accurate test for homogeneity of odds ratios based on Cochran's Q-statistic

    Get PDF
    Background: A frequently used statistic for testing homogeneity in a meta-analysis of K independent studies is Cochran's Q. For a standard test of homogeneity the Q statistic is referred to a chi-square distribution with K - 1 degrees of freedom. For the situation in which the effects of the studies are logarithms of odds ratios, the chi-square distribution is much too conservative for moderate size studies, although it may be asymptotically correct as the individual studies become large. Methods: Using a mixture of theoretical results and simulations, we provide formulas to estimate the shape and scale parameters of a gamma distribution to t the distribution of Q. Results: Simulation studies show that the gamma distribution is a good approximation to the distribution for Q. Conclusions: : Use of the gamma distribution instead of the chi-square distribution for Q should eliminate inaccurate inferences in assessing homogeneity in a meta-analysis. (A computer program for implementing this test is provided.) This hypothesis test is competitive with the Breslow-Day test both in accuracy of level and in power

    Unveilling the role of macrodipolar interactions in the properties of self-assembled supramolecular materials

    Get PDF
    Self-assembling of supramolecules composed of benzene and cyclohexanetricarboxamide derivatives can form highly organized 1D fibers exhibiting macrodipoles. The way fibers pack in the condensed phase governs the final properties of the supramolecular material, where macrodipoles can be oriented parallel or antiparallel to each other, and their magnitude can be tuned by additional intra-columnar dipole stabilization. X-ray structural elucidation of these materials remains a real challenge due to the difficulty in growing single crystals. This problem can be tackled by using atomistic molecular dynamics to simulate supramolecular materials composed of cyclohexanetricarboxamide derivatives assuming different magnitudes and orientations of macrodipoles in the condensed phase, as we show here. The results provide insight on the isotropization mechanism of the supramolecules and also reveal that the relative orientation between macrodipoles can indeed influence their stability. This work nicely complements X-ray structural characterizations of supramolecular materials, and helps understand structure-property relationships of a range of similar non-covalent materials

    Carbon storage and DNA absorption in allophanic soils and paleosols

    Get PDF
    Andisols and andic paleosols dominated by the nanocrystalline mineral allophane sequester large amounts of carbon (C), attributable mainly to its chemical bonding with charged hydroxyl groups on the surface of allophane together with its physical protection in nanopores within and between allophane nanoaggregates. C near-edge X-ray absorption fine structure (NEXAFS) spectra for a New Zealand Andisol (Tirau series) showed that the organic matter (OM) mainly comprises quinonic, aromatic, aliphatic, and carboxylic C. In different buried horizons from several other Andisols, C contents varied but the C species were similar, attributable to pedogenic processes operating during developmental upbuilding, downward leaching, or both. The presence of OM in natural allophanic soils weakened the adsorption of DNA on clay; an adsorption isotherm experiment involving humic acid (HA) showed that HA-free synthetic allophane adsorbed seven times more DNA than HA-rich synthetic allophane. Phosphorus X-ray absorption near-edge structure (XANES) spectra for salmonsperm DNA and DNA-clay complexes indicated that DNA was bound to the allophane clay through the phosphate group, but it is not clear if DNA was chemically bound to the surface of the allophane or to OM, or both. We plan more experiments to investigate interactions among DNA, allophane (natural and synthetic), and OM. Because DNA shows a high affinity to allophane, we are studying the potential to reconstruct late Quaternary palaeoenvironments by attempting to extract and characterise ancient DNA from allophanic paleosol

    Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis.

    Get PDF
    BACKGROUND: Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. METHODS AND FINDINGS: We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. CONCLUSIONS: Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary
    corecore