14,547 research outputs found
Theoretical and software considerations for nonlinear dynamic analysis
In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented
Theory of excitation of Rydberg polarons in an atomic quantum gas
We present a quantum many-body description of the excitation spectrum of
Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with
functional determinant theory, and we extend this technique to describe Rydberg
polarons of finite mass. Mean-field and classical descriptions of the spectrum
are derived as approximations of the many-body theory. The various approaches
are applied to experimental observations of polarons created by excitation of
Rydberg atoms in a strontium Bose-Einstein condensate.Comment: 14 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1706.0371
Creation of Rydberg Polarons in a Bose Gas
We report spectroscopic observation of Rydberg polarons in an atomic Bose
gas. Polarons are created by excitation of Rydberg atoms as impurities in a
strontium Bose-Einstein condensate. They are distinguished from previously
studied polarons by macroscopic occupation of bound molecular states that arise
from scattering of the weakly bound Rydberg electron from ground-state atoms.
The absence of a -wave resonance in the low-energy electron-atom scattering
in Sr introduces a universal behavior in the Rydberg spectral lineshape and in
scaling of the spectral width (narrowing) with the Rydberg principal quantum
number, . Spectral features are described with a functional determinant
approach (FDA) that solves an extended Fr\"{o}hlich Hamiltonian for a mobile
impurity in a Bose gas. Excited states of polyatomic Rydberg molecules
(trimers, tetrameters, and pentamers) are experimentally resolved and
accurately reproduced with FDA.Comment: 5 pages, 3 figure
On CPT Symmetry: Cosmological, Quantum-Gravitational and other possible violations and their phenomenology
I discuss various ways in which CPT symmetry may be violated, and their
phenomenology in current or immediate future experimental facilities, both
terrestrial and astrophysical. Specifically, I discuss first violations of CPT
symmetry due to the impossibility of defining a scattering matrix as a
consequence of the existence of microscopic or macroscopic space-time
boundaries, such as Planck-scale Black-Hole (event) horizons, or cosmological
horizons due to the presence of a (positive) cosmological constant in the
Universe. Second, I discuss CPT violation due to breaking of Lorentz symmetry,
which may characterize certain approaches to quantum gravity, and third, I
describe models of CPT non invariance due to violations of locality of
interactions. In each of the above categories I discuss experimental
sensitivities. I argue that the majority of Lorentz-violating cases of CPT
breaking, with minimal (linear) suppression by the Planck-mass scale, are
already excluded by current experimental tests. There are however some
(stringy) models which can evade these constraints.Comment: 27 pages latex, Conference talk Beyond the Desert 200
Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration
Over the last ~ 3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx
Extended hydrodynamics from Enskog's equation for a two-dimensional system general formalism
Balance equations are derived from Enskog's kinetic equation for a
two-dimensional system of hard disks using Grad's moment expansion method. This
set of equations constitute an extended hydrodynamics for moderately dense
bi-dimensional fluids. The set of independent hydrodynamic fields in the
present formulations are: density, velocity, temperature {\em and
also}--following Grad's original idea--the symmetric and traceless pressure
tensor and the heat flux vector . An approximation
scheme similar in spirit to one made by Grad in his original work is made. Once
the hydrodynamics is derived it is used to discuss the nature of a simple
one-dimensional heat conduction problem. It is shown that, not too far from
equilibrium, the nonequilibrium pressure in this case only depends on the
density, temperature and heat flux vector.Comment: :9 pages, 1 figure, This will appear in J. Stat. Phys. with minor
corrections and corresponds to Ref[9] of cond-mat/050710
Relative abundances of cosmic ray nuclei B-C-N-O in the energy region from 10 GeV/n to 300 GeV/n. Results from ATIC-2 (the science flight of ATIC)
The ATIC balloon-borne experiment measures the energy spectra of elements
from H to Fe in primary cosmic rays from about 100 GeV to 100 TeV. ATIC is
comprised of a fully active bismuth germanate calorimeter, a carbon target with
embedded scintillator hodoscopes, and a silicon matrix that is used as the main
charge detector. The silicon matrix produces good charge resolution for protons
and helium but only partial resolution for heavier nuclei. In the present
paper, the charge resolution of ATIC was improved and backgrounds were reduced
in the region from Be to Si by using the upper layer of the scintillator
hodoscope as an additional charge detector. The flux ratios of nuclei B/C, C/O,
N/O in the energy region from about 10 GeV/nucleon to 300 GeV/nucleon obtained
from this high-resolution, high-quality charge spectra are presented, and
compared with existing theoretical predictions.Comment: 4 pages,2 figures, a paper for 30-th International Cosmic Rays
Conferenc
- …