3,044 research outputs found
Robust long-distance entanglement and a loophole-free Bell test with ions and photons
Two trapped ions that are kilometers apart can be entangled by the joint
detection of two photons, each coming from one of the ions, in a basis of
entangled states. Such a detection is possible with linear optical elements.
The use of two-photon interference allows entanglement distribution without
interferometric sensitivity to the path length of the photons. The present
method of creating entangled ions also opens up the possibility of a
loophole-free test of Bell's inequalities.Comment: published versio
Constraining the dark energy with galaxy clusters X-ray data
The equation of state characterizing the dark energy component is constrained
by combining Chandra observations of the X-ray luminosity of galaxy clusters
with independent measurements of the baryonic matter density and the latest
measurements of the Hubble parameter as given by the HST key project. By
assuming a spatially flat scenario driven by a "quintessence" component with an
equation of state we place the following limits on the
cosmological parameters and : (i) and (1) if the
equation of state of the dark energy is restricted to the interval (\emph{usual} quintessence) and (ii) and
() if violates the null energy condition and assume values (\emph{extended} quintessence or ``phantom'' energy). These results are in
good agreement with independent studies based on supernovae observations,
large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe
Dyson-Schwinger Equations - aspects of the pion
The contemporary use of Dyson-Schwinger equations in hadronic physics is
exemplified via applications to the calculation of pseudoscalar meson masses,
and inclusive deep inelastic scattering with a determination of the pion's
valence-quark distribution function.Comment: 4 pages. Contribution to the Proceedings of ``DPF 2000,'' the Meeting
of the Division of Particles and Fields of the American Physical Society,
August 9-12, 2000, Department of Physics, the Ohio State University,
Columbus, Ohi
Defect-induced condensation and central peak at elastic phase transitions
Static and dynamical properties of elastic phase transitions under the
influence of short--range defects, which locally increase the transition
temperature, are investigated. Our approach is based on a Ginzburg--Landau
theory for three--dimensional crystals with one--, two-- or three--dimensional
soft sectors, respectively. Systems with a finite concentration of
quenched, randomly placed defects display a phase transition at a temperature
, which can be considerably above the transition temperature
of the pure system. The phonon correlation function is calculated in
single--site approximation. For a dynamical central peak
appears; upon approaching , its height diverges and its width
vanishes. Using an appropriate self--consistent method, we calculate the
spatially inhomogeneous order parameter, the free energy and the specific heat,
as well as the dynamical correlation function in the ordered phase. The
dynamical central peak disappears again as the temperatur is lowered below
. The inhomogeneous order parameter causes a static central
peak in the scattering cross section, with a finite width depending on the
orientation of the external wave vector relative to the soft sector.
The jump in the specific heat at the transition temperatur of the pure system
is smeared out by the influence of the defects, leading to a distinct maximum
instead. In addition, there emerges a tiny discontinuity of the specific heat
at . We also discuss the range of validity of the mean--field
approach, and provide a more realistic estimate for the transition temperature.Comment: 11 pages, 11 ps-figures, to appear in PR
The LBDS Hercules sample of mJy radio sources at 1.4 GHz - II. Redshift distribution, radio luminosity function, and the high-redshift cut-off
{Abridged} A combination of spectroscopy and broadband photometric redshifts
has been used to find the complete redshift distribution of the Hercules sample
of millijansky radio sources. These data have been used to examine the
evolution of the radio luminosity function (RLF) and its high-redshift cut-off.
New redshifts have been measured for eleven sources, and a further ten upper
limits are given. The total number of sources with known redshifts in the
sample is now 47 (65%). We calculated broadband photometric redshifts for the
remaining one-third of the sample.
For the luminosity range probed by the present study (P_1.4 > 10^24.5
W/Hz/sr), we use the V/V_max test to show conclusively that there is a deficit
of high-redshift (z > 2-2.5) objects. Comparison with the model RLFs of Dunlop
& Peacock (1990) shows that our data can now exclude pure luminosity evolution.
Two of the models of DP90, and the RLF deduced by direct binning of the data,
both favour a luminosity dependence for the high-redshift cut-off, with
lower-luminosity sources (P_1.4 \simeq 10^24 W/Hz/sr) in decline by z \simeq
1-1.5 while higher-luminosity sources (P_1.4 \simeq 10^{25-26} W/Hz/sr) decline
in comoving number density beyond z \simeq 2-2.5.Comment: Revised version submitted to MNRAS. 16 pages, 12 figure
Particle-Like Description in Quintessential Cosmology
Assuming equation of state for quintessential matter: , we
analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown
that its dynamics is formally equivalent to that of a classical particle under
the action of 1D potential . It is shown that Hamiltonian method can be
easily implemented to obtain a classification of all cosmological solutions in
the phase space as well as in the configurational space. Examples taken from
modern cosmology illustrate the effectiveness of the presented approach.
Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis
of acceleration and horizon problems, are presented. The inverse problem of
reconstructing the Hamiltonian dynamics (i.e. potential function) from the
luminosity distance function for supernovae is also considered.Comment: 35 pages, 26 figures, RevTeX4, some applications of our treatment to
investigation of quintessence models were adde
QED Effective Action at Finite Temperature: Two-Loop Dominance
We calculate the two-loop effective action of QED for arbitrary constant
electromagnetic fields at finite temperature T in the limit of T much smaller
than the electron mass. It is shown that in this regime the two-loop
contribution always exceeds the influence of the one-loop part due to the
thermal excitation of the internal photon. As an application, we study light
propagation and photon splitting in the presence of a magnetic background field
at low temperature. We furthermore discover a thermally induced contribution to
pair production in electric fields.Comment: 34 pages, 4 figures, LaTe
Nucleon form factors and a nonpointlike diquark
Nucleon form factors are calculated on q^2 in [0,3] GeV^2 using an Ansatz for
the nucleon's Fadde'ev amplitude motivated by quark-diquark solutions of the
relativistic Fadde'ev equation. Only the scalar diquark is retained, and it and
the quark are confined. A good description of the data requires a nonpointlike
diquark correlation with an electromagnetic radius of 0.8 r_pi. The composite,
nonpointlike nature of the diquark is crucial. It provides for diquark-breakup
terms that are of greater importance than the diquark photon absorption
contribution.Comment: 5 pages, REVTEX, epsfig, 3 figure
Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo
We treated 10 children with X-linked SCID (SCID-X1) using gammaretrovirus-mediated gene transfer. Those with sufficient follow-up were found to have recovered substantial immunity in the absence of any serious adverse events up to 5 years after treatment. To determine the influence of vector integration on lymphoid reconstitution, we compared retroviral integration sites (RISs) from peripheral blood CD3(+) T lymphocytes of 5 patients taken between 9 and 30 months after transplantation with transduced CD34(+) progenitor cells derived from 1 further patient and I healthy donor. Integration occurred preferentially in gene regions on either side of transcription start sites, was clustered, and correlated with the expression level in CD34(+) progenitors during transduction. In contrast to those in CD34(+) cells, RISs recovered from engrafted CD3(+)T cells were significantly overrepresented within or near genes encoding proteins with kinase or transferase activity or involved in phosphorus metabolism. Although gross patterns of gene expression were unchanged in transduced cells, the divergence of RIS target frequency between transduced progenitor cells and post-thymic T lymphocytes indicates that vector integration influences cell survival, engraftment, or proliferation
Perturbative Computation of the Gluonic Effective Action via Polyaokov's World-Line Path Integral
The Polyakov world-line path integral describing the propagation of gluon
field quanta is constructed by employing the background gauge fixing method and
is subsequently applied to analytically compute the divergent terms of the one
(gluonic) loop effective action to fourth order in perturbation theory. The
merits of the proposed approach is that, to a given order, it reduces to
performing two integrations, one over a set of Grassmann and one over a set of
Feynman-type parameters through which one manages to accomodate all Feynman
diagrams entering the computation at once.Comment: 21 page
- …
