1,963 research outputs found
Linear stability analysis of resonant periodic motions in the restricted three-body problem
The equations of the restricted three-body problem describe the motion of a
massless particle under the influence of two primaries of masses and
, , that circle each other with period equal to
. When , the problem admits orbits for the massless particle that
are ellipses of eccentricity with the primary of mass 1 located at one of
the focii. If the period is a rational multiple of , denoted ,
some of these orbits perturb to periodic motions for . For typical
values of and , two resonant periodic motions are obtained for . We show that the characteristic multipliers of both these motions are given
by expressions of the form in the limit . The coefficient is analytic in at and
C(e,p,q)=O(e^{\abs{p-q}}). The coefficients in front of e^{\abs{p-q}},
obtained when is expanded in powers of for the two resonant
periodic motions, sum to zero. Typically, if one of the two resonant periodic
motions is of elliptic type the other is of hyperbolic type. We give similar
results for retrograde periodic motions and discuss periodic motions that
nearly collide with the primary of mass
Hosts of Type II Quasars: an HST Study
Type II quasars are luminous Active Galactic Nuclei whose centers are
obscured by large amounts of gas and dust. In this contribution we present
3-band HST images of nine type II quasars with redshifts 0.25<z<0.4 selected
from the Sloan Digital Sky Survey based on their emission line properties. The
intrinsic luminosities of these quasars are thought to be in the range
-24>M_B>-26, but optical obscuration implies that host galaxies can be studied
unencumbered by bright nuclei. Each object has been imaged in three filters
(`red', `green' and `blue') placed between the strong emission lines. The
spectacular, high quality images reveal a wealth of details about the structure
of the host galaxies and their environments. Most galaxies in the sample are
ellipticals, but strong deviations from de Vaucouleurs profiles are found,
especially in the blue band. We argue that most of these deviations are due to
the light from the nucleus scattered off interstellar material in the host
galaxy. This scattered component can make a significant contribution to the
broad-band flux and complicates the analysis of the colors of the stellar
populations in the host galaxy. This extended component can be difficult to
notice in unobscured luminous quasars and may bias the results of host galaxy
studies.Comment: 6 pages including 2 color figures; proceedings of the 'QSO host
galaxies: evolution and environment' conference, Leiden, August 200
Coloring translates and homothets of a convex body
We obtain improved upper bounds and new lower bounds on the chromatic number
as a linear function of the clique number, for the intersection graphs (and
their complements) of finite families of translates and homothets of a convex
body in \RR^n.Comment: 11 pages, 2 figure
Electromagnetic transitions of the helium atom in superstrong magnetic fields
We investigate the electromagnetic transition probabilities for the helium
atom embedded in a superstrong magnetic field taking into account the finite
nuclear mass. We address the regime \gamma=100-10000 a.u. studying several
excited states for each symmetry, i.e. for the magnetic quantum numbers
0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry.
The oscillator strengths as a function of the magnetic field, and in particular
the influence of the finite nuclear mass on the oscillator strengths are shown
and analyzed.Comment: 10 pages, 8 figure
Photon Spectrum Produced by the Late Decay of a Cosmic Neutrino Background
We obtain the photon spectrum induced by a cosmic background of unstable
neutrinos. We study the spectrum in a variety of cosmological scenarios and
also we allow for the neutrinos having a momentum distribution (only a critical
matter dominated universe and neutrinos at rest have been considered until
now). Our results can be helpful when extracting bounds on neutrino electric
and magnetic moments from cosmic photon background observations.Comment: RevTex, 14 pages, 3 figures; minor changes, references added. To
appear in Phys. Rev.
Continuous loading of a magnetic trap
We have realized a scheme for continuous loading of a magnetic trap (MT).
^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap
(MOT). Optical pumping to a metastable state decouples atoms from the cooling
light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking
metastable atoms are trapped in the magnetic quadrupole field provided by the
MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we
load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into
the MT. After loading we can perform optical repumping to realize a MT of
ground state chromium atoms.Comment: 4 pages, 4 figures, version 2, modified references, included
additional detailed information, minor changes in figure 3 and in tex
Semiclassical force for electroweak baryogenesis: three-dimensional derivation
We derive a semiclassical transport equation for fermions propagating in the
presence of a CP-violating planar bubble wall at a first order electroweak
phase transition. Starting from the Kadanoff-Baym (KB) equation for the
two-point (Wightman) function we perform an expansion in gradients, or
equivalently in the Planck constant h-bar. We show that to first order in h-bar
the KB equations have a spectral solution, which allows for an on-shell
description of the plasma excitations. The CP-violating force acting on these
excitations is found to be enhanced by a boost factor in comparison with the
1+1-dimensional case studied in a former paper. We find that an identical
semiclassical force can be obtained by the WKB method. Applications to the MSSM
are also mentioned.Comment: 19 page
The Fourth Standard Model Family and the Competition in Standart Model Higgs Boson Search at Tevatron and LHC
The impact of the fourth Standard Model family on Higgs boson search at
Tevatron and LHC is reviewed.Comment: 7 pages, 13 figure
Recommended from our members
When almost is not even close: Remarks on the approximability of HDTP
A growing number of researchers in Cognitive Science advocate the thesis that human cognitive capacities are constrained by computational tractability. If right, this thesis also can be expected to have far-reaching consequences for work in Artificial General Intelligence: Models and systems considered as basis for the development of general cognitive architectures with human-like performance would also have to comply with tractability constraints, making in-depth complexity theoretic analysis a necessary and important part of the standard research and development cycle already from a rather early stage. In this paper we present an application case study for such an analysis based on results from a parametrized complexity and approximation theoretic analysis of the Heuristic Driven Theory Projection (HDTP) analogy-making framework
- …