64,779 research outputs found

    The isentropic equation of state of 2-flavor QCD

    Full text link
    Using Taylor expansions of the pressure obtained previously in studies of 2-flavor QCD at non-zero chemical potential we calculate expansion coefficients for the energy and entropy densities up to O(μq6){\cal O}(\mu_q^6) in the quark chemical potential. We use these series in μq/T\mu_q/T to determine lines of constant entropy per baryon number (S/NBS/N_B) that characterize the expansion of dense matter created in heavy ion collisions. In the high temperature regime these lines are found to be well approximated by lines of constant μq/T\mu_q/T. In the low temperature phase, however, the quark chemical potential is found to increase with decreasing temperature. This is in accordance with resonance gas model calculations. Along the lines of constant S/NBS/N_B we calculate the energy density and pressure. Within the accuracy of our present analysis we find that the ratio p/ϵp/\epsilon for T>T0T>T_0 as well as the softest point of the equation of state, (p/ϵ)min0.075(p/\epsilon)_{min}\simeq 0.075, show no significant dependence on S/NBS/N_B.Comment: 7 pages, 10 figure

    Numerical study of the equation of state for two flavor QCD at finite density

    Full text link
    We discuss the equation of state for 2 flavor QCD at non-zero temperature and density. Derivatives of lnZ\ln Z with respect to quark chemical potential μq\mu_q up to fourth order are calculated, enabling estimates of the pressure, quark number density and associated susceptibilities as functions of μq\mu_q via a Taylor series expansion. It is found that the fluctuations in the quark number density increase in the vicinity of the phase transition temperature and the susceptibilities start to develop a pronounced peak as μq\mu_q is increased. This suggests the presence of a critical endpoint in the (T,μq)(T, \mu_q) plane.Comment: 5 pages, 4 figures, Talk at Confinement 200

    Where is the chiral critical point in 3-flavor QCD?

    Full text link
    We determine the location of the second order endpoint of the line of first order chiral phase transition in 3-flavor QCD at vanishing chemical potential. Using Ferrenberg-Swendsen reweighting for two values of the quark mass we determine the dependence of the transition line on the chemical potential and locate the chiral critical point. For both quantities we find a significant quark mass dependence.Comment: 3 pages, Lattice2003(nonzero), one reference exchange

    New CP-violation and preferred-frame tests with polarized electrons

    Get PDF
    We used a torsion pendulum containing 9×1022\sim 9 \times 10^{22} polarized electrons to search for CP-violating interactions between the pendulum's electrons and unpolarized matter in the laboratory's surroundings or the sun, and to test for preferred-frame effects that would precess the electrons about a direction fixed in inertial space. We find gPegSN/(c)<1.7×1036|g_{\rm P}^e g_{\rm S}^N|/(\hbar c)< 1.7 \times 10^{-36} and gAegVN/(c)<4.8×1056|g_{\rm A}^e g_{\rm V}^N|/(\hbar c) < 4.8 \times 10^{-56} for λ>1\lambda > 1AU. Our preferred-frame constraints, interpreted in the Kosteleck\'y framework, set an upper limit on the parameter b~e5.0×1021|\bm{\tilde {b}}^e| \leq 5.0 \times 10^{-21} eV that should be compared to the benchmark value me2/MPlanck=2×1017m_e^2/M_{\rm Planck}= 2 \times 10^{-17} eV.Comment: 4 figures, accepted for publication in Physical Review Letter

    On the magnetic equation of state in (2+1)-flavor QCD

    Full text link
    A first study of critical behavior in the vicinity of the chiral phase transition of (2+1)-flavor QCD is presented. We analyze the quark mass and volume dependence of the chiral condensate and chiral susceptibilities in QCD with two degenerate light quark masses and a strange quark. The strange quark mass (m_s) is chosen close to its physical value; the two degenerate light quark masses (m_l) are varied in a wide range 1/80 \le m_l/m_s \le 2/5, where the smallest light quark mass value corresponds to a pseudo-scalar Goldstone mass of about 75 MeV. All calculations are performed with staggered fermions on lattices with temporal extent Nt=4. We show that numerical results are consistent with O(N) scaling in the chiral limit. We find that in the region of physical light quark mass values, m_l/m_s \simeq 1/20, the temperature and quark mass dependence of the chiral condensate is already dominated by universal properties of QCD that are encoded in the scaling function for the chiral order parameter, the magnetic equation of state. We also provide evidence for the influence of thermal fluctuations of Goldstone modes on the chiral condensate at finite temperature. At temperatures below, but close to the chiral phase transition at vanishing quark mass, this leads to a characteristic dependence of the light quark chiral condensate on the square root of the light quark mass.Comment: 18 pages, 18 EPS-file

    Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    Full text link
    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective field theory interactions. In this work, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei with 3A163\le A\le16. Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. The outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to 16^{16}O, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.Comment: 23 pages, 10 figure

    How Sensitive are Di-Leptons from Rho Mesons to the High Baryon Density Region?

    Full text link
    We show that the measurement of di-leptons might provide only a restricted view into the most dense stages of heavy ion reactions. Thus, possible studies of meson and baryon properties at high baryon densities, as e.g. done at GSI-HADES and envisioned for FAIR-CBM, might observe weaker effects than currently expected in certain approaches. We argue that the strong absorption of resonances in the high baryon density region of the heavy ion collision masks information from the early hot and dense phase due to a strong increase of the total decay width because of collisional broadening. To obtain additional information, we also compare the currently used approaches to extract di-leptons from transport simulations - i.e. shining, only vector mesons from final baryon resonance decays and instant emission of di-leptons and find a strong sensitivity on the method employed in particular at FAIR and SPS energies. It is shown explicitly that a restriction to rho meson (and therefore di-lepton) production only in final state baryon resonance decays provide a strong bias towards rather low baryon densities. The results presented are obtained from UrQMD v2.3 calculations using the standard set-up.Comment: 8 pages, 6 figures, expanded versio

    Evolution of fluctuations near QCD critical point

    Full text link
    We propose to describe the time evolution of quasi-stationary fluctuations near QCD critical point by a system of stochastic Boltzmann-Langevin-Vlasov-type equations. We derive the equations and study the system analytically in the linearized regime. Known results for equilibrium stationary fluctuations as well as the critical scaling of diffusion coefficient are reproduced. We apply the approach to the long-standing question of the fate of the critical point fluctuations during the hadronic rescattering stage of the heavy-ion collision after chemical freezeout. We find that if conserved particle number fluctuations survive the rescattering, so do, under a certain additional condition, the fluctuations of non-conserved quantities, such as mean transverse momentum. We derive a simple analytical formula for the magnitude of this "memory" effect.Comment: 13 pages, as published, typos corrected, some definitions made more explici

    Superconductivity in the Two-Dimensional tt-JJ Model at Low Hole Doping

    Full text link
    By combining a generalized Lanczos scheme with the variational Monte Carlo method we can optimize the short- and long-range properties of the groundstate separately. This allows us to measure the long-range order of the groundstate of the tt-JJ model as a function of the coupling constant J/tJ/t, and identify a region of finite d-wave superconducting long-range order. With a lattice size of 50 sites we can reliably examine hole densities down to 0.16.Comment: 12 pages and 4 PostScript figures, ReVTeX 3.0, ETH-TH/94-1

    QCD at non-zero chemical potential and temperature from the lattice

    Full text link
    A study of QCD at non-zero chemical potential, mu, and temperature, T, is performed using the lattice technique. The transition temperature (between the confined and deconfined phases) is determined as a function of mu and is found to be in agreement with other work. In addition the variation of the pressure and energy density with mu is obtained for small positive mu. These results are of particular relevance for heavy-ion collision experiments.Comment: Invited paper presented at the Joint Workshop on Physics at the Japanese Hadron Facility, March 2002, Adelaide. 10 pages, uses ws-procs9x6.cls style file (provided
    corecore