2,033 research outputs found

    The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone

    Get PDF
    SummaryObjectiveC–C chemokine receptor type 5 (CCR5) has been implicated in rheumatoid arthritis and several inflammatory diseases, where its blockade resulted in reduced joint destruction. However, its role in modulating cartilage and bone changes in post-traumatic osteoarthritis (OA) has not yet been investigated. In this study, we investigated changes in articular cartilage, synovium and bone in a post-traumatic OA model using CCR5-deficient (CCR5−/−) mice.MethodDestabilization of the medial meniscus (DMM) was performed on the right knee of 10-week old CCR5−/− and C57BL/6J wild-type (WT) mice to induce post-traumatic OA. The contralateral left knee served as sham-operated control. Knee joints were analyzed at 4-, 8- and 12-weeks after surgery to evaluate cartilage degeneration and synovitis by histology, and bone changes via micro-CT.ResultsOur findings showed that CCR5−/− mice exhibited significantly less cartilage degeneration than WT mice at 8- and 12-weeks post-surgery. CCR5−/− mice showed some altered bone parameters 18- and 22-weeks of age, but body size and weight were not affected. The effect of CCR5-ablation was insignificant at all time points post-surgery for synovitis and for bone parameters such as bone volume/total volume, connectivity density index (CDI), structure model index (SMI), subchondral bone plate thickness, and trabecular bone number, thickness and spacing.ConclusionThese findings suggest that CCR5−/− mice developed less cartilage degeneration, which may indicate a potential protective role of CCR5-ablation in cartilage homeostasis. There were no differences in bone or synovial response to surgery suggesting that CCR5 functions primarily in cartilage during the development of post-traumatic OA

    Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert atmospheric observatory

    Get PDF
    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder

    Quantum corrections to the mass of the supersymmetric vortex

    Full text link
    We calculate quantum corrections to the mass of the vortex in N=2 supersymmetric abelian Higgs model in (2+1) dimensions. We put the system in a box and apply the zeta function regularization. The boundary conditions inevitably violate a part of the supersymmetries. Remaining supersymmetry is however enough to ensure isospectrality of relevant operators in bosonic and fermionic sectors. A non-zero correction to the mass of the vortex comes from finite renormalization of couplings.Comment: Latex, 18 pp; v2 reference added; v3 minor change

    Factsheet: onderzoek Leeratelier Maatwerk & Regie

    Get PDF
    The politics and administration of institutional chang

    The response function of a sphere in a viscoelastic two-fluid medium

    Full text link
    In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We calculate the complete response of a single bead in this medium to an external force and compare the result to the commonly-accepted, generalized Stokes-Einstein relation (GSER). We find that our response function is well approximated by the GSER only within a particular frequency range determined by the material parameters of both the bead and the network. We then discuss the relevance of this result to recent experiments. Finally we discuss the approximations made in our solution of the response function by comparing our results to the exact solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure

    A Single Laser System for Ground-State Cooling of 25-Mg+

    Full text link
    We present a single solid-state laser system to cool, coherently manipulate and detect 25^{25}Mg+^+ ions. Coherent manipulation is accomplished by coupling two hyperfine ground state levels using a pair of far-detuned Raman laser beams. Resonant light for Doppler cooling and detection is derived from the same laser source by means of an electro-optic modulator, generating a sideband which is resonant with the atomic transition. We demonstrate ground-state cooling of one of the vibrational modes of the ion in the trap using resolved-sideband cooling. The cooling performance is studied and discussed by observing the temporal evolution of Raman-stimulated sideband transitions. The setup is a major simplification over existing state-of-the-art systems, typically involving up to three separate laser sources

    Particle-Like Description in Quintessential Cosmology

    Full text link
    Assuming equation of state for quintessential matter: p=w(z)ρp=w(z)\rho, we analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown that its dynamics is formally equivalent to that of a classical particle under the action of 1D potential V(a)V(a). It is shown that Hamiltonian method can be easily implemented to obtain a classification of all cosmological solutions in the phase space as well as in the configurational space. Examples taken from modern cosmology illustrate the effectiveness of the presented approach. Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis of acceleration and horizon problems, are presented. The inverse problem of reconstructing the Hamiltonian dynamics (i.e. potential function) from the luminosity distance function dL(z)d_{L}(z) for supernovae is also considered.Comment: 35 pages, 26 figures, RevTeX4, some applications of our treatment to investigation of quintessence models were adde

    Macromolecular theory of solvation and structure in mixtures of colloids and polymers

    Full text link
    The structural and thermodynamic properties of mixtures of colloidal spheres and non-adsorbing polymer chains are studied within a novel general two-component macromolecular liquid state approach applicable for all size asymmetry ratios. The dilute limits, when one of the components is at infinite dilution but the other concentrated, are presented and compared to field theory and models which replace polymer coils with spheres. Whereas the derived analytical results compare well, qualitatively and quantitatively, with mean-field scaling laws where available, important differences from ``effective sphere'' approaches are found for large polymer sizes or semi-dilute concentrations.Comment: 23 pages, 10 figure

    Inflation with a constant ratio of scalar and tensor perturbation amplitudes

    Get PDF
    The single scalar field inflationary models that lead to scalar and tensor perturbation spectra with amplitudes varying in direct proportion to one another are reconstructed by solving the Stewart-Lyth inverse problem to next-to-leading order in the slow-roll approximation. The potentials asymptote at high energies to an exponential form, corresponding to power law inflation, but diverge from this model at low energies, indicating that power law inflation is a repellor in this case. This feature implies that a fine-tuning of initial conditions is required if such models are to reproduce the observations. The required initial conditions might be set through the eternal inflation mechanism. If this is the case, it will imply that the spectral indices must be nearly constant, making the underlying model observationally indistinguishable from power law inflation.Comment: 20 pages, 7 figures. Major changes to the Introduction following referee's comments. One figure added. Some other minor changes. No conclusion was modifie

    Cosmology with a long range repulsive force

    Get PDF
    We consider a class of cosmological models in which the universe is filled with a (non-electric) charge density that repels itself by means of a force carried by a vector boson with a tiny mass. When the vector's mass depends upon other fields, the repulsive interaction gives rise to an electromagnetic barrier which prevents these fields from driving the mass to zero. This can modify the cosmology dramatically. We present a very simple realization of this idea in which the vector's mass arises from a scalar field. The electromagnetic barrier prevents this field from rolling down its potential and thereby leads to accelerated expansion.Comment: 15 pages, 8 figures, LaTeX (version accepted for publication in PRD). 3 new figures, extended discussion of observational consequence
    • 

    corecore