918 research outputs found

    The Sol-gel process for nano-technologies : new nanocomposites with interesting optical and mechanical properties

    Get PDF
    Various nanocomposite systems have been synthesized by sol-gel routes. For this reason, prefabricated nanoparticles (SiO2 sols or boehmite powder) have been dispersed after surface modification in sol-gel-derived organically modified or polymeric ligand matrices. In all cases, a significant effect on dispersibility by surface modification could be observed. After curing, the mechanical or optical properties depend strongly on the dispersion and surface modification. Using these results, composites to be used in chip coupling and as hard coatings on polycarbonate and CR 39 have been developed

    Monitoring morphology and properties of hybrid organic-inorganic materials from in situ polymerization of tetraethoxysilane in polyimide polymer : 1. effect of the coupling agent on the microstructure and interfacial interaction

    Get PDF
    Transmission electron microscopy (TEM), small angle X-ray (SAXS) and dynamical mechanical thermal analysis (DMTA) were used to characterize the morphology and thermo-mechanical properties of hybrid organic inorganic materials. These materials were based on polyimide (PI) and tetraethoxysilane (TEOS). Polyimide polymer is prepared from 4,4'-oxydianiline (ODA) 2,2-Bis( 3-amino- 4-hydroxyphenyl) hexafluoro-propane (6F-OHDA) pyromellitic dianhydride ( PMDA) polyamic polymer. In one family of hybrid materials 3-isocyanatopropyltriethoxysilane (ICTS) is used as coupling agent in order to enhance the interfacial interaction between polyimide and silica. It was possible to modulate the morphology as well as the optical and thermo-mechanical properties of these hybrid materials depending on the formulation used. TEM and SAXS analysis indicated that silica domains on the nanoscale level are obtained when coupling agent is used in the formulation. Additionally the TEM and SAXS analysis indicated that miscibility of the organic and the inorganic phases on the molecular scale is obtained in the hybrid films when ICTS as coupling agent is added to the polyamic acid. These techniques show a fractal structure of the hybrid materials with coupling agent. This was confirmed with DMTA analysis which shows very high temperature relaxation ( more than 450 degrees C). From this result it could be derived that the addition of ICTS causes a morphological transformation from discrete particulate microstructure to fine interpenetrated or co-continuous phases. The intimate miscibility of the phases is accompanied at the same time by the amelioration of thermo-mechanical properties of the hybrid films

    Flow Field Evolution of a Decaying Sunspot

    Full text link
    We study the evolution of the flows and horizontal proper motions in and around a decaying follower sunspot based on time sequences of two-dimensional spectroscopic observations in the visible and white light imaging data obtained over six days from June~7 to~12, 2005. During this time period the sunspot decayed gradually to a pore. The spectroscopic observations were obtained with the Fabry-P\'{e}rot based Visible-Light Imaging Magnetograph (VIM) in conjunction with the high-order adaptive optics (AO) system operated at the 65 cm vacuum reflector of the Big Bear Solar Observatory (BBSO). We apply local correlation tracking (LCT) to the speckle reconstructed time sequences of white-light images around 600 nm to infer horizontal proper motions while the Doppler shifts of the scanned \FeI line at 630.15 nm are used to calculate line-of-sight (LOS) velocities with sub-arcsecond resolution. We find that the dividing line between radial inward and outward proper motions in the inner and outer penumbra, respectively, survives the decay phase. In particular the moat flow is still detectable after the penumbra disappeared. Based on our observations three major processes removed flux from the sunspot: (a) fragmentation of the umbra, (b) flux cancelation of moving magnetic features (MMFs; of the same polarity as the sunspot) that encounter the leading opposite polarity network and plages areas, and (c) flux transport by MMFs (of the same polarity as the sunspot) to the surrounding network and plage regions that have the same polarity as the sunspot.Comment: 9 pages, 7 figures, The Astrophysical Journal, accepted September, 200

    Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells

    Get PDF
    We study the emission of light from industrial multicrystalline silicon solar cells under forward and reverse biases. Camera-based luminescence imaging techniques and dark lock-in thermography are used to gain information about the spatial distribution and the energy dissipation at pre-breakdown sites frequently found in multicrystalline silicon solar cells. The pre-breakdown occurs at specific sites and is associated with an increase in temperature and the emission of visible light under reverse bias. Moreover, additional light emission is found in some regions in the subband-gap range between 1400 and 1700 nm under forward bias. Investigations of multicrystalline silicon solar cells with different interstitial oxygen concentrations and with an electron microscopic analysis suggest that the local light emission in these areas is directly related to clusters of oxygen. © 2009 American Institute of Physics

    Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer

    Get PDF
    Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Cary 5000 in accordance with the Guide to the expression of uncertainty in measurements. We focus on the instrumentation-related uncertainty contributions rather than the specific application and thus outline a general procedure which can be adapted for other instruments. Moreover, we discover a systematic signal deviation due to the inertia of the measurement amplifier and develop and apply a correction procedure. Thereby we increase the usable dynamic range of the instrument by more than one order of magnitude. We present methods for the quantification of the uncertainty contributions and combine them into an uncertainty budget for the device. © 2017 Author(s)

    Reversible and Irreversible Interactions of Poly(3-hexylthiophene) with Oxygen Studied by Spin-Sensitive Methods

    Full text link
    Understanding of degradation mechanisms in polymer:fullerene bulk-heterojunctions on the microscopic level aimed at improving their intrinsic stability is crucial for the breakthrough of organic photovoltaics. These materials are vulnerable to exposure to light and/or oxygen, hence they involve electronic excitations. To unambiguously probe the excited states of various multiplicities and their reactions with oxygen, we applied combined magneto-optical methods based on multifrequency (9 and 275 GHz) electron paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM = [6,6]-phenyl-C61-butyric acid methyl ester). We identified two distinct photochemical reaction routes, one being fully reversible and related to the formation of polymer:oxygen charge transfer complexes, the other one, irreversible, being related to the formation of singlet oxygen under participation of bound triplet excitons on the polymer chain. With respect to the blends, we discuss the protective effect of the methanofullerenes on the conjugated polymer bypassing the triplet exciton generation

    A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro

    Get PDF
    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection complexes. In analogy to the terms lipoplex and polyplex, we propose to describe the nanoparticle-DNA complexes by the term 'nanoplex'. Three batches, Si10E, Si100E, and Si26H, sized between 10 and 100 nm and with ζ potentials ranging from +7 to +31 mV at pH 7.4 were evaluated. The galactosidase expression plasmid DNA pCMVβ was immobilized on the particle surface and efficiently transfected Cos-1 cells. The transfection activity was accompanied by very low cytotoxicity, with LD50 values in the milligrams per milliliter range. The most active batch, Si26H, was produced by modification of commercially available silica particles with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane, yielding spherical nanoparticles with a mean diameter of 26 nm and a ζ potential of +31 mV at pH 7.4. Complexes of Si26H and pCMVβ plasmid DNA formed at w/w ratios of 10 were most effective in promoting transfection of Cos-1 cells in the absence of serum. At this ratio, >90% of the DNA was associated with the particles, yielding nanoplexes with a net negative surface charge. When the transfection medium was supplemented with 10% serum, maximum gene expression was observed at a w/w ratio of 30, at which the resulting particle-DNA complexes possessed a positive surface charge. Transfection was strongly increased in the presence of 100 µM chloroquine in the incubation medium and reached approximately 30% of the efficiency of a 60 kDa polyethylenimine. In contrast to polyethylenimine, no toxicity was observed at the concentrations required. Atomic force microscopy of Si26H-DNA complexes revealed a spaghetti-meatball-like structure. The surface of complexes prepared at a w/w ratio of 30 was dominated by particles half-spheres. Complex sizes correlated well with those determined previously by dynamic light scattering

    ADAM10 and ADAM17 promote SARS‐CoV‐2 cell entry and spike protein‐mediated lung cell fusion

    Get PDF
    The severe‐acute‐respiratory‐syndrome‐coronavirus‐2 (SARS‐CoV‐2) is the causative agent of COVID‐19, but host cell factors contributing to COVID‐19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS‐CoV‐2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID‐19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS‐CoV‐2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease‐targeted inhibitors severely impair lung cell infection by the SARS‐CoV‐2 variants of concern alpha, beta, delta, and omicron and also reduce SARS‐CoV‐2 infection of primary human lung cells in a TMPRSS2 protease‐independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development
    • 

    corecore