Understanding of degradation mechanisms in polymer:fullerene
bulk-heterojunctions on the microscopic level aimed at improving their
intrinsic stability is crucial for the breakthrough of organic photovoltaics.
These materials are vulnerable to exposure to light and/or oxygen, hence they
involve electronic excitations. To unambiguously probe the excited states of
various multiplicities and their reactions with oxygen, we applied combined
magneto-optical methods based on multifrequency (9 and 275 GHz) electron
paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic
resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and
polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM =
[6,6]-phenyl-C61-butyric acid methyl ester). We identified two distinct
photochemical reaction routes, one being fully reversible and related to the
formation of polymer:oxygen charge transfer complexes, the other one,
irreversible, being related to the formation of singlet oxygen under
participation of bound triplet excitons on the polymer chain. With respect to
the blends, we discuss the protective effect of the methanofullerenes on the
conjugated polymer bypassing the triplet exciton generation