14,923 research outputs found

    Disorder-driven exceptional lines and Fermi ribbons in tilted nodal-line semimetals

    Get PDF
    We consider the impact of disorder on the spectrum of three-dimensional nodal-line semimetals. We show that the combination of disorder and a tilted spectrum naturally leads to a non-Hermitian self-energy contribution that can split a nodal line into a pair of exceptional lines. These exceptional lines form the boundary of an open and orientable bulk Fermi ribbon in reciprocal space on which the energy gap vanishes. We find that the orientation and shape of such a disorder-induced bulk Fermi ribbon is controlled by the tilt direction and the disorder properties, which can also be exploited to realize a twisted bulk Fermi ribbon with nontrivial winding number. Our results put forward a paradigm for the exploration of non-Hermitian topological phases of matter.Comment: Main Text (6 pages, 2 figures) + Supplemental Material (7 pages, 1 figure

    Pro-p groups of positive deficiency

    Full text link
    Let \Gamma be a finitely presentable pro-p group with a nontrivial finitely generated closed normal subgroup N of infinite index. Then def(\Gamma)\leq 1, and if def(\Gamma)=1 then \Gamma is a pro-p duality group of dimension 2, N is a free pro-p group and \Gamma/N is virtually free. In particular, if the centre of \Gamma is nontrivial and def(\Gamma)\geq 1, then def(\Gamma)=1, cd G \leq 2 and \Gamma is virtually a direct product F \times Z_p, with F a finitely generated free pro-p group.Comment: final version, to appear in Bull. LM

    Exploring the spin-1/2 frustrated square lattice model with high-field magnetization measurements

    Full text link
    We report on high-field magnetization measurements for a number of layered vanadium phosphates that were recently recognized as spin-1/2 frustrated square lattice compounds with ferromagnetic nearest-neighbor couplings (J_1) and antiferromagnetic next-nearest-neighbor couplings (J_2). The saturation fields of the materials lie in the range from 4 to 24 T and show excellent agreement with the previous estimates of the exchange couplings deduced from low-field thermodynamic measurements. The consistency of the high-field data with the regular frustrated square lattice model provides experimental evidence for a weak impact of spatial anisotropy on the nearest-neighbor couplings in layered vanadium phosphates. The variation of the J_2/J_1 ratio within the compound family facilitates the experimental access to the evolution of the magnetization curve upon the change of the frustration magnitude. Our results support the recent theoretical prediction by Thalmeier et al. [Phys. Rev. B, 77, 104441 (2008)] and give evidence for the enhanced bending of the magnetization curves due to the increasing frustration of the underlying spin system.Comment: Brief Report: 4 pages, 3 figures, 1 tabl

    Morphological stasis in the first myxomycete from the Mesozoic, and the likely role of cryptobiosis

    Get PDF
    Myxomycetes constitute a group within the Amoebozoa well known for their motile plasmodia and morphologically complex fruiting bodies. One obstacle hindering studies of myxomycete evolution is that their fossils are exceedingly rare, so evolutionary analyses of this supposedly ancient lineage of amoebozoans are restricted to extant taxa. Molecular data have significantly advanced myxomycete systematics, but the evolutionary history of individual lineages and their ecological adaptations remain unknown. Here, we report exquisitely preserved myxomycete sporocarps in amber from Myanmar, ca. 100 million years old, one of the few fossil myxomycetes, and the only definitive Mesozoic one. Six densely-arranged stalked sporocarps were engulfed in tree resin while young, with almost the entire spore mass still inside the sporotheca. All morphological features are indistinguishable from those of the modern, cosmopolitan genus Stemonitis, demonstrating that sporocarp morphology has been static since at least the mid-Cretaceous. The ability of myxomycetes to develop into dormant stages, which can last years, may account for the phenotypic stasis between living Stemonitis species and this fossil one, similar to the situation found in other organisms that have cryptobiosis. We also interpret Stemonitis morphological stasis as evidence of strong environmental selection favouring the maintenance of adaptations that promote wind dispersal.Peer reviewe

    The line planning routing game

    Get PDF
    In this paper, we propose a novel algorithmic approach to solve line planning problems. To this end, we model the line planning problem as a game where the passengers are players which aim at minimizing individual objective functions composed of travel time, transfer penalties, and a share of the overall cost of the solution. To find equilibria of this routing game, we use a best-response algorithm. We investigate, under which conditions on the line planning model a passenger’s best-response can be calculated efficiently and which properties are needed to guarantee convergence of the best-response algorithm. Furthermore, we determine the price of anarchy which bounds the objective value of an equilibrium with respect to a system- optimal solution of the line planning problem. For problems where best-responses cannot be found efficiently, we propose heuristic methods. We demonstrate our findings on some small computational examples

    q-Deformed Superalgebras

    Full text link
    The article deals with q-analogs of the three- and four-dimensional Euclidean superalgebra and the Poincare superalgebra.Comment: 38 pages, LateX, no figures, corrected typo

    RNA secondary structure design

    Get PDF
    We consider the inverse-folding problem for RNA secondary structures: for a given (pseudo-knot-free) secondary structure find a sequence that has that structure as its ground state. If such a sequence exists, the structure is called designable. We implemented a branch-and-bound algorithm that is able to do an exhaustive search within the sequence space, i.e., gives an exact answer whether such a sequence exists. The bound required by the branch-and-bound algorithm are calculated by a dynamic programming algorithm. We consider different alphabet sizes and an ensemble of random structures, which we want to design. We find that for two letters almost none of these structures are designable. The designability improves for the three-letter case, but still a significant fraction of structures is undesignable. This changes when we look at the natural four-letter case with two pairs of complementary bases: undesignable structures are the exception, although they still exist. Finally, we also study the relation between designability and the algorithmic complexity of the branch-and-bound algorithm. Within the ensemble of structures, a high average degree of undesignability is correlated to a long time to prove that a given structure is (un-)designable. In the four-letter case, where the designability is high everywhere, the algorithmic complexity is highest in the region of naturally occurring RNA.Comment: 11 pages, 10 figure

    Simulated Greenland Surface Mass Balance in the GISS ModelE2 GCM: Role of the Ice Sheet Surface

    Get PDF
    The rate of growth or retreat of the Greenland and Antarctic ice sheets remains a highly uncertain component of future sea level change. Here we examine the simulation of Greenland ice sheet surface mass balance (GrIS SMB) in the NASA Goddard Institute for Space Studies (GISS) ModelE2 General Circulation Model (GCM). GCMs are often limited in their ability to represent SMB compared with polarregion Regional Climate Models (RCMs). We compare ModelE2 simulated GrIS SMB for presentday (19962005) simulations with fixed ocean conditions, at a spatial resolution of 2 latitude by 2.5 longitude (~200 km), with SMB simulated by the Modle Atmosphrique Rgionale (MAR) RCM (19962005 at a 25 km resolution). ModelE2 SMB agrees well with MAR SMB on the whole, but there are distinct spatial patterns of differences and large differences in some SMB components. The impact of changes to the ModelE2 surface are tested, including a subgridscale representation of SMB with surface elevation classes. This has a minimal effect on ice sheetwide SMB, but corrects local biases. Replacing fixed surface albedo with satellitederived values and an agedependent scheme has a larger impact, increasing simulated melt by 60100%. We also find that lower surface albedo can enhance the effects of elevation classes. Reducing ModelE2 surface roughness length to values closer to MAR reduces sublimation by ~50%. Further work is required to account for meltwater refreezing in ModelE2, and to understand how differences in atmospheric processes and model resolution influence simulated SMB
    • 

    corecore