17,718 research outputs found

    Spontaneous spiking in an autaptic Hodgkin-Huxley set up

    Full text link
    The effect of intrinsic channel noise is investigated for the dynamic response of a neuronal cell with a delayed feedback loop. The loop is based on the so-called autapse phenomenon in which dendrites establish not only connections to neighboring cells but as well to its own axon. The biophysical modeling is achieved in terms of a stochastic Hodgkin-Huxley model containing such a built in delayed feedback. The fluctuations stem from intrinsic channel noise, being caused by the stochastic nature of the gating dynamics of ion channels. The influence of the delayed stimulus is systematically analyzed with respect to the coupling parameter and the delay time in terms of the interspike interval histograms and the average interspike interval. The delayed feedback manifests itself in the occurrence of bursting and a rich multimodal interspike interval distribution, exhibiting a delay-induced reduction of the spontaneous spiking activity at characteristic frequencies. Moreover, a specific frequency-locking mechanism is detected for the mean interspike interval.Comment: 8 pages, 10 figure

    On the arithmetic of Krull monoids with infinite cyclic class group

    Get PDF
    Let HH be a Krull monoid with infinite cyclic class group GG and let GP⊂GG_P \subset G denote the set of classes containing prime divisors. We study under which conditions on GPG_P some of the main finiteness properties of factorization theory--such as local tameness, the finiteness and rationality of the elasticity, the structure theorem for sets of lengths, the finiteness of the catenary degree, and the existence of monotone and of near monotone chains of factorizations--hold in HH. In many cases, we derive explicit characterizations

    Searching atomic spin contrast on nickel oxide (001) by force microscopy

    Get PDF
    The (001) surface of NiO, an antiferromagnet at room temperature, was investigated under ultra-high vacuum conditions with frequency modulation atomic force microscopy (FM-AFM). The antiferromagnetic coupling between ions leads to a spin superstructure on (001) surfaces. Exchange interaction between the probe of a force microscope and the NiO (001) surface should allow to image spin superstructures in real space. The surface was imaged with three different probing tips: nonmagnetic W tips, ferromagnetic Co tips and antiferromagnetic NiO tips - and atomic resolution was achieved with all three of them in various distance regimes and in several channels. Evidence for spin contrast was obtained in experiments that utilize NiO tips and oscillation amplitudes in the \AA-regime, where optimal signal-to-noise ratio is expected. The spin contrast is weaker than expected and only visible in Fourier space images.Comment: 7 pages, 6 figures, submitted to Physical Review

    Double Entropic Stochastic Resonance

    Full text link
    We demonstrate the appearance of a purely entropic stochastic resonance (ESR) occurring in a geometrically confined system, where the irregular boundaries cause entropic barriers. The interplay between a periodic input signal, a constant bias and intrinsic thermal noise leads to a resonant ESR-phenomenon in which feeble signals become amplified. This new phenomenon is characterized by the presence of two peaks in the spectral amplification at corresponding optimal values of the noise strength. The main peak is associated with the manifest stochastic resonance synchronization mechanism involving the inter-well noise-activated dynamics while a second peak relates to a regime of optimal sensitivity for intra-well dynamics. The nature of ESR, occurring when the origin of the barrier is entropic rather than energetic, offers new perspectives for novel investigations and potential applications. ESR by itself presents yet another case where one constructively can harvest noise in driven nonequilibrium systems.Comment: 6 pages, 7 figures ; Europhys. Lett., in press (2009

    A variational framework for flow optimization using semi-norm constraints

    Full text link
    When considering a general system of equations describing the space-time evolution (flow) of one or several variables, the problem of the optimization over a finite period of time of a measure of the state variable at the final time is a problem of great interest in many fields. Methods already exist in order to solve this kind of optimization problem, but sometimes fail when the constraint bounding the state vector at the initial time is not a norm, meaning that some part of the state vector remains unbounded and might cause the optimization procedure to diverge. In order to regularize this problem, we propose a general method which extends the existing optimization framework in a self-consistent manner. We first derive this framework extension, and then apply it to a problem of interest. Our demonstration problem considers the transient stability properties of a one-dimensional (in space) averaged turbulent model with a space- and time-dependent model "turbulent viscosity". We believe this work has a lot of potential applications in the fluid dynamics domain for problems in which we want to control the influence of separate components of the state vector in the optimization process.Comment: 30 page

    Entropic stochastic resonance: the constructive role of the unevenness

    Full text link
    We demonstrate the existence of stochastic resonance (SR) in confined systems arising from entropy variations associated to the presence of irregular boundaries. When the motion of a Brownian particle is constrained to a region with uneven boundaries, the presence of a periodic input may give rise to a peak in the spectral amplification factor and therefore to the appearance of the SR phenomenon. We have proved that the amplification factor depends on the shape of the region through which the particle moves and that by adjusting its characteristic geometric parameters one may optimize the response of the system. The situation in which the appearance of such entropic stochastic resonance (ESR) occurs is common for small-scale systems in which confinement and noise play an prominent role. The novel mechanism found could thus constitute an important tool for the characterization of these systems and can put to use for controlling their basic properties.Comment: 8 pages, 8 figure

    Biased diffusion in confined media: Test of the Fick-Jacobs approximation and validity criteria

    Get PDF
    We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the Fick-Jacobs equation which accounts for the effect of the lateral confinement by introducing an entropic barrier in a one dimensional diffusion. The validity of this approximation, being based on the assumption of an instantaneous equilibration of the particle distribution in the cross-section of the structure, is analyzed by comparing the different time scales that characterize the problem. A validity criterion is established in terms of the shape of the structure and of the applied force. It is analytically corroborated and verified by numerical simulations that the critical value of the force up to which this description holds true scales as the square of the periodicity of the structure. The criterion can be visualized by means of a diagram representing the regions where the Fick-Jacobs description becomes inaccurate in terms of the scaled force versus the periodicity of the structure.Comment: 20 pages, 7 figure

    Are stress-free membranes really 'tensionless'?

    Full text link
    In recent years it has been argued that the tension parameter driving the fluctuations of fluid membranes, differs from the imposed lateral stress, the 'frame tension'. In particular, stress-free membranes were predicted to have a residual fluctuation tension. In the present paper, this argument is reconsidered and shown to be inherently inconsistent -- in the sense that a linearized theory, the Monge model, is used to predict a nonlinear effect. Furthermore, numerical simulations of one-dimensional stiff membranes are presented which clearly demonstrate, first, that the internal 'intrinsic' stress in membranes indeed differs from the frame tension as conjectured, but second, that the fluctuations are nevertheless driven by the frame tension. With this assumption, the predictions of the Monge model agree excellently with the simulation data for stiffness and tension values spanning several orders of magnitude

    Hamiltonian systems with symmetry, coadjoint orbits and plasma physics

    Get PDF
    The symplectic and Poisson structures on reduced phase spaces are reviewed, including the symplectic structure on coadjoint orbits of a Lie group and the Lie-Poisson structure on the dual of a Lie algebra. These results are applied to plasma physics. We show in three steps how the Maxwell-Vlasov equations for a collisionless plasma can be written in Hamiltonian form relative to a certain Poisson bracket. First, the Poisson-Vlasov equations are shown to be in Hamiltonian form relative to the Lie-Poisson bracket on the dual of the (nite dimensional) Lie algebra of innitesimal canonical transformations. Then we write Maxwell's equations in Hamiltonian form using the canonical symplectic structure on the phase space of the electromagnetic elds, regarded as a gauge theory. In the last step we couple these two systems via the reduction procedure for interacting systems. We also show that two other standard models in plasma physics, ideal MHD and two- uid electrodynamics, can be written in Hamiltonian form using similar group theoretic techniques

    Coarse-Grained Simulations of Membranes under Tension

    Full text link
    We investigate the properties of membranes under tension by Monte-Carlo simulations of a generic coarse-grained model for lipid bilayers. We give a comprising overview of the behavior of several membrane characteristics, such as the area per lipid, the monolayer overlap, the nematic order, and pressure profiles. Both the low-temperature regime, where the membranes are in a gel phase, and the high-temperature regime, where they are in the fluid phase, are considered. In the gel state, the membrane is hardly influenced by tension. In the fluid state, high tensions lead to structural changes in the membrane, which result in different compressibility regimes. The ripple state, which is found at tension zero in the transition regime between the fluid and the gel phase, disappears under tension and gives way to an interdigitated phase. We also study the membrane fluctuations in the fluid phase. In the low tension regime the data can be fitted nicely to a suitably extended elastic theory. At higher tensions the elastic fit consistently underestimates the strength of long-wavelength fluctuations. Finally, we investigate the influence of tension on the effective interaction between simple transmembrane inclusions and show that tension can be used to tune the hydrophobic mismatch interaction between membrane proteins.Comment: 14 pages, 14 figures, accepted for publication in The Journal of Chemical Physic
    • …
    corecore