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a b s t r a c t

Let H be a Krull monoid with infinite cyclic class group G and let GP ⊂ G denote the set of
classes containing primedivisors.We study underwhich conditions onGP someof themain
finiteness properties of factorization theory – such as local tameness, the finiteness and
rationality of the elasticity, the structure theorem for sets of lengths, the finiteness of the
catenary degree, and the existence ofmonotone andnearmonotone chains of factorizations
– hold in H . In many cases, we derive explicit characterizations.
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1. Introduction

By an atomic monoid, we mean a commutative cancellative semigroup with unit element such that every non-unit has
a factorization as a finite product of atoms (irreducible elements). The multiplicative monoid consisting of the nonzero
elements from a noetherian domain is such a monoid. Let H be an atomic monoid. Then every non-unit has a unique
factorization into atoms if and only if H is a Krull monoid with trivial class group. The first objective of factorization theory
is to describe the various phenomena related to the non-uniqueness of factorizations. This is done by studying a variety of
arithmetical invariants such as sets of lengths, elasticities and the catenary and tame degrees of the monoids. The second
main objective is to then characterize the finiteness (or even to find the precise values) of these arithmetical invariants in
terms of classical algebraic invariants of the objects under investigation. We illustrate this in the next paragraph. To be able
to do so, recall that the elasticity ρ(H) ofH is the supremumover all k/l forwhich there is an equation u1 ·. . .·uk = v1 ·. . .·vl,
where u1, . . . , uk, v1, . . . , vl are atoms of H .
The following result by Carlitz (achieved in 1960) is considered as a starting point of factorization theory: the ring of

integers oK of an algebraic number field has elasticity ρ(oK ) = 1 if and only if its class group has at most two elements.
A non-principal order o in an algebraic number field has finite elasticity if and only if, for every prime ideal p containing
the conductor, there is precisely one prime ideal p in the principal order o such that p ∩ o = p. This result (achieved by
Halter-Koch in 1995) has far reaching generalizations (achieved by Kainrath) to finitely generated domains and to various
classes of Mori domains satisfying natural finiteness conditions (see [3,35,39,38]).
This paper is concerned with Krull monoids. Their arithmetic is completely determined by the class group and the

distribution of prime divisors in the classes. We outline this in greater detail. First, recall that an integral domain is a Krull
domain if and only if its multiplicative monoid of nonzero elements is a Krull monoid, and a noetherian domain is Krull if
and only if it is integrally closed. A reduced Krull monoid is uniquely determined by its class group and by the distribution
of prime divisors in the classes (see Lemma 3.3 for a precise statement). Suppose H is a Krull monoid with class group G
and let GP ⊂ G denote the set of classes containing prime divisors. Suppose that GP = G. In that case, it is comparatively
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easy to show that any of the arithmetical invariants under discussion is finite if and only if G is finite (the precise values
of arithmetical invariants – when G is finite – are studied by methods of Additive and Combinatorial Number Theory; see
[28, Chapter 6] or [25] for a survey on this direction). However, very little is known about the arithmetic of H when G is
infinite and GP is a proper subset of G.
The present paper provides an in-depth study of the arithmetic of Krull monoids having an infinite cyclic class group.

This situation was studied first by Anderson, Chapman and Smith [1], then by Hassler [37], and the most recent progress
(again due to Chapman et al.) was achieved in [2]. We continue this work, thus studying monoids with class group G ∼= Z
but having the set of classes containing primes GP being a proper subset. The arithmetical properties under investigation
are discussed in Section 2 and at the beginning of Section 5. The required material on Krull monoids, together with a list of
relevant examples, is summarized in Section 3. Our main results are Theorems 4.2, 5.2 and 6.4 and Corollary 7.4.
In Theorem 4.2, we give a lengthy list of factorization invariants, the finiteness of any one of which is shown to be equiva-

lent to a natural finiteness condition onGP , thus characterizingwhen these ‘weak’ invariants, including the local tamedegree,
the catenary degree, the set of distances, and several other invariants, are each finite (several previously known equivalences
are included for completeness). Perhapsmore importantly, Theorem 4.2 shows these conditions to be equivalent to the elas-
ticity invariant being a rational number, which was an open problem first proposed in 1994 and which is here resolved.
One of the crowning results of early Factorization Theorywas the establishment, for a large class ofmonoids, of a structure

theorem describing the number of atoms possible in a factorization of a given element, often now known as the Structure
Theorem for Sets of Lengths. The Structure Theorem for Sets of Lengths holding for a monoid is a much ‘stronger’ invariant
than those found in Theorem 4.2, as it tells us a great deal more about the structure of possible factorizations. Two other
such ‘stronger’ invariants are the monotone catenary degree and the successive distance (see later sections for full details
and definitions), which concernwhether there is always a well-behaved sequence of factorizations slowly transforming one
factorization of a given element into another. In Theorem 5.2, we establish several implications involving these stronger
invariants and, in Theorem 6.4, we characterize when the Structure Theorem for Sets of Lengths holds for class group G ∼= Z
under some additional restrictions onGP . Counterexamples to these invariants always being finite are also furnished. Finally,
Corollary 7.4 (and the other results of Section 7) show that while the monotone catenary may unfortunately be infinite,
there is nonetheless still a nice chain of factorizations between any two factorizations which are not overly pathological (in
a technical sense made explicit in the section).
Along the way, several newmethods are introduced, particularly for the proofs of Proposition 4.8 and Theorem 7.3. More

detailed discussion of the main results is shifted to the relevant sections where we have the required terminology at our
disposal.

2. Preliminaries

Our notation and terminology are consistent with [28]. We briefly gather some key notions. We denote by N the set of
positive integers, and we put N0 = N ∪ {0}. For real numbers a, b ∈ R, we set [a, b] = {x ∈ Z | a ≤ x ≤ b}. For a subset X
of (possibly negative) integers, we use gcd X and lcm X to denote the greatest common divisor and least common multiple
respectively, and their values are always chosen to be nonnegative regardless of the sign of the inputs.

Let L, L′ ⊂ Z. We set−L = {−a | a ∈ L}, L+ = L ∩ N and L− = L ∩ (−N). We denote by L+ L′ = {a+ b | a ∈ L, b ∈ L′}
their sumset. If ∅ 6= L ⊂ N, we call

ρ(L) = sup
{m
n

∣∣∣ m, n ∈ L} = sup L
min L

∈ Q≥1 ∪ {∞}

the elasticity of L, and we set ρ({0}) = 1. Distinct elements k, l ∈ L are called adjacent if L∩[min{k, l},max{k, l}] = {k, l}. A
positive integer d ∈ N is called a distance of L if there exist adjacent elements k, l ∈ Lwith d = |k− l|. We denote by ∆(L)
the set of distances of L. Note that ∆(L) = ∅ if and only if |L| ≤ 1, and that L is an arithmetical progression with difference
d ∈ N if and only if∆(L) ⊂ {d}. We need the following generalization of an arithmetical progression.
Let d ∈ N, M ∈ N0 and {0, d} ⊂ D ⊂ [0, d]. Then L is called an almost arithmetical multiprogression (AAMP for short)

with difference d, period D , and bound M , if
L = y+ (L′ ∪ L∗ ∪ L′′) ⊂ y+D + dZ

where

• L∗ is finite and nonempty with min L∗ = 0 and L∗ = (D + dZ) ∩ [0,max L∗]
• L′ ⊂ [−M,−1] and L′′ ⊂ max L∗ + [1,M]
• y ∈ Z.

Note that an AAMP is finite and nonempty. An AAMP with period {0, d} is called an almost arithmetical progression (AAP for
short).

By a monoid, we mean a commutative, cancellative semigroup with unit element; we denote the unit element by 1. Let
H be a monoid and let a, b ∈ H . We call a a divisor of b and write a | b (or, more precisely, a |H b) if b ∈ aH . We call a and b
associated (in symbols, a ' b) if aH = bH (or, equivalently, if aH× = bH×). An element u ∈ H is called

• invertible if there is an element v ∈ H with uv = 1.



A. Geroldinger et al. / Journal of Pure and Applied Algebra 214 (2010) 2219–2250 2221

• irreducible (or an atom) if u is not invertible and, for all a, b ∈ H , u = ab implies a is invertible or b is invertible.
• prime if u is not invertible and, for all a, b ∈ H , u | ab implies u | a or u | b.

We denote by A(H) the set of atoms of H , by H× the group of invertible elements, and by Hred = {aH× | a ∈ H} the
associated reduced monoid of H . We say that H is reduced if |H×| = 1. We denote by q(H) a quotient group of H with
H ⊂ q(H), and for a prime element p ∈ H , let vp : q(H) → Z be the p-adic valuation. For a subset H0 ⊂ H , we denote by
[H0] ⊂ H the submonoid generated by H0 and by 〈H0〉 ⊂ q(H) the subgroup generated by H0.
For a set P , we denote byF (P) the free (abelian)monoid with basis P . Then every a ∈ F (P) has a unique representation

in the form
a =

∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P.

We call |a| =
∑
p∈P vp(a) the length of a.

The free monoid Z(H) = F
(
A(Hred)

)
is called the factorization monoid of H , and the unique homomorphism

π : Z(H)→ Hred satisfying π(u) = u for each u ∈ A(Hred)
is called the factorization homomorphism of H . For a ∈ H and k ∈ N, the set

ZH(a) = Z(a) = π−1(aH×) ⊂ Z(H) is the set of factorizations of a,
Zk(a) = {z ∈ Z(a) | |z| = k} is the set of factorizations of a of length k, and
LH(a) = L(a) =

{
|z|

∣∣ z ∈ Z(a)
}
⊂ N0 is the set of lengths of a.

By definition, we have Z(a) = {1} and L(a) = {0} for all a ∈ H×. The monoid H is called

• atomic if Z(a) 6= ∅ for all a ∈ H ,
• a BF-monoid (a bounded factorization monoid) if L(a) is finite and nonempty for all a ∈ H ,
• factorial if |Z(a)| = 1 for all a ∈ H ,
• half-factorial if |L(a)| = 1 for all a ∈ H .

We now introduce the arithmetical concepts which are used throughout the whole paper. Some more specific notions
will be recalled at the beginning of Section 5. Let H be atomic and a ∈ H . Then ρ(a) = ρ

(
L(a)

)
is called the elasticity of a,

and the elasticity of H is defined as
ρ(H) = sup{ρ(b) | b ∈ H} ∈ R≥1 ∪ {∞}.

We say that H has accepted elasticity if there exists some b ∈ H with ρ(b) = ρ(H).
Let k ∈ N. If H 6= H×, then

Vk(H) =
⋃

k∈L(a),a∈H

L(a)

is the union of all sets of lengths containing k. When H× = H , we set Vk(H) = {k}. In both cases, we define ρk(H) =
supVk(H) and λk(H) = minVk(H). Clearly, we have V1(H) = {1} and k ∈ Vk(H). By its definition, H is half-factorial if and
only if Vk(H) = {k} for each k ∈ N.
We denote by

∆(H) =
⋃
b∈H

∆
(
L(b)

)
⊂ N

the set of distances of H , and byL(H) = {L(b) | b ∈ H} the system of sets of lengths of H .
Let z, z ′ ∈ Z(H). Then we can write
z = u1 · . . . · ulv1 · . . . · vm and z ′ = u1 · . . . · ulw1 · . . . · wn,

where l, m, n ∈ N0 and u1, . . . , ul, v1, . . . , vm, w1, . . . , wn ∈ A(Hred) are such that
{v1, . . . , vm} ∩ {w1, . . . , wn} = ∅.

Then gcd(z, z ′) = u1 · . . . · ul, and we call
d(z, z ′) = max{m, n} = max{|z gcd(z, z ′)−1|, |z ′ gcd(z, z ′)−1|} ∈ N0

the distance between z and z ′. If π(z) = π(z ′) and z 6= z ′, then
2+

∣∣|z| − |z ′|∣∣ ≤ d(z, z ′) (2.1)
by [28, Lemma 1.6.2]. For subsets X, Y ⊂ Z(H), we set

d(X, Y ) = min{d(x, y) | x ∈ X, y ∈ Y },
and thus X ∩ Y 6= ∅ if and only if d(X, Y ) = 0.

We recall the concepts of the (monotone) catenary and tame degrees (see also the beginning of Section 7). The catenary
degree c(a) of the element a is the smallest N ∈ N0 ∪ {∞} such that, for any two factorizations z, z ′ of a, there exists a
finite sequence z = z0, z1, . . . , zk = z ′ of factorizations of a such that d(zi−1, zi) ≤ N for all i ∈ [1, k]. The monotone
catenary degree cmon(a) is defined in the same way with the additional restriction that |z0| ≤ · · · ≤ |zk| or |z0| ≥ · · · ≥ |zk|.
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We say that the two factorizations z and z ′ can be concatenated by a (monotone) N-chain if a sequence fulfilling the above
conditions exists. Moreover,

c(H) = sup{c(b) | b ∈ H} ∈ N0 ∪ {∞} and cmon(H) = sup{cmon(b) | b ∈ H} ∈ N0 ∪ {∞}

denote the catenary degree and the monotone catenary degree of H . Clearly, we have c(a) ≤ cmon(a) for all a ∈ H , as well as
c(H) ≤ cmon(H), and (2.1) implies that 2+ sup∆(H) ≤ c(H).
For x ∈ Z(H), let t(a, x) ∈ N0 ∪ {∞} denote the smallest N ∈ N0 ∪ {∞}with the following property:

If Z(a) ∩ xZ(H) 6= ∅ and z ∈ Z(a), then there exists z ′ ∈ Z(a) ∩ xZ(H) such that d(z, z ′) ≤ N .

For subsets H ′ ⊂ H and X ⊂ Z(H), we define

t(H ′, X) = sup
{
t(b, x)

∣∣ b ∈ H ′, x ∈ X} ∈ N0 ∪ {∞}.
H is called locally tame if t(H, u) <∞ for all u ∈ A(Hred) (see the beginning of Section 4 and Definition 6.1).

3. Krull monoids: basic properties and examples

The theory of Krull monoids is presented in detail in the monographs [36,33,28]. Here we first gather the required
terminology. After that, we recall some facts concerning transfer homomorphisms, since the arithmetic of Krull monoids is
studied via such homomorphisms. In particular, we deal with block homomorphisms (which are transfer homomorphisms;
see Lemma3.3 and the comment thereafter) fromKrullmonoids into the associated blockmonoids. At the end of this section,
we discuss examples of Krull monoids with infinite cyclic class group.
Krull monoids. Let H and D be monoids. A monoid homomorphism ϕ : H → D is called

• a divisor homomorphism if ϕ(a) | ϕ(b) implies that a | b for all a, b ∈ H
• cofinal if for every a ∈ D there exists some u ∈ H such that a |ϕ(u)
• a divisor theory (for H) if D = F (P) for some set P , ϕ is a divisor homomorphism, and for every p ∈ P (equivalently for
every a ∈ F (P)), there exists a finite subset ∅ 6= X ⊂ H satisfying p = gcd

(
ϕ(X)

)
.

Note that, by definition, every divisor theory is cofinal. We call C(ϕ) = q(D)/q(ϕ(H)) the class group of ϕ and use
additive notation for this group. For a ∈ q(D), we denote by [a] = [a]ϕ = a q(ϕ(H)) ∈ q(D)/q(ϕ(H)) the class
containing a. We recall that ϕ is cofinal if and only if C(ϕ) = {[a] | a ∈ D}, and if ϕ is a divisor homomorphism, then
ϕ(H) = {a ∈ D | [a] = [1]}. If ϕ : H → F (P) is a cofinal divisor homomorphism, then

GP = {[p] = pq(ϕ(H)) | p ∈ P} ⊂ C(ϕ)

is called the set of classes containing prime divisors, and we have [GP ] = C(ϕ) (for a converse, see Lemma 3.4). If H ⊂ D is
a submonoid, then H is called cofinal (saturated, resp.) in D if the imbedding H ↪→ D is cofinal (a divisor homomorphism,
resp.).
The monoid H is called a Krull monoid if it satisfies one of the following equivalent conditions ([28, Theorem 2.4.8]; see

[41] for recent progress):

• H is v-noetherian and completely integrally closed.
• H has a divisor theory.
• Hred is a saturated submonoid of a free monoid.

In particular, H is a Krull monoid if and only if Hred is a Krull monoid. Let H be a Krull monoid. Then a divisor theory
ϕ : H → F (P) is unique up to unique isomorphism. In particular, the class group C(ϕ) defined via a divisor theory of
H and the subset of classes containing prime divisors depend only on H . Thus it is called the class group of H and is denoted
by C(H). If H is a Krull monoid, then I∗v(H) denotes the monoid of v-invertible v-ideals of H , which is a free monoid with
basis X(H). In such case, the map δ : H → I∗v(H) given by a 7→ aH is a divisor theory, and thus C(H) is the v-class group of
H (up to isomorphism).
Transfer homomorphisms.We recall some of the main properties which are needed in the following sections (details can
be found in [28, Section 3.2]).

Definition 3.1. A monoid homomorphism θ : H → B is called a transfer homomorphism if it has the following properties:

(T 1) B = θ(H)B× and θ−1(B×) = H×.
(T 2) If u ∈ H , b, c ∈ B and θ(u) = bc , then there exist v, w ∈ H such that u = vw, θ(v) ' b and θ(w) ' c .

Every transfer homomorphism θ gives rise to a unique extension θ : Z(H)→ Z(B) satisfying

θ(uH×) = θ(u)B× for each u ∈ A(H).

For a ∈ H , we denote by c(a, θ) the smallest N ∈ N0 ∪ {∞}with the following property:
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If z, z ′ ∈ ZH(a) and θ(z) = θ(z ′), then there exist some k ∈ N0 and factorizations z = z0, . . . , zk = z ′ ∈ ZH(a) such
that θ(zi) = θ(z) and d(zi−1, zi) ≤ N for all i ∈ [1, k] (that is, z and z ′ can be concatenated by an N-chain in the fiber
ZH(a) ∩ θ

−1
(θ(z)) ).

Then

c(H, θ) = sup{c(a, θ) | a ∈ H} ∈ N0 ∪ {∞}

denotes the catenary degree in the fibres.

Lemma 3.2. Let θ : H → B and θ ′ : B→ B′ be transfer homomorphisms of atomic monoids.

1. For every a ∈ H, we have θ(ZH(a)) = ZB(θ(a)) and LH(a) = LB(θ(a)).
2. c(B) ≤ c(H) ≤ max{c(B), c(H, θ)}, cmon(B) ≤ cmon(H) ≤ max{cmon(B), c(H, θ)} and δ(B) = δ(H).
3. For every a ∈ H and all k, l ∈ L(a), we have d

(
Zk(a), Zl(a)

)
= d

(
Zk
(
θ(a)

)
, Zl
(
θ(a)

))
.

4. For every a ∈ H, we have c(a, θ ′ ◦ θ) ≤ max{c(a, θ), c(θ(a), θ ′)}.
In particular, c(H, θ ′ ◦ θ) ≤ max{c(H, θ), c(B, θ ′)}.

Proof. 1. This follows from [28, Proposition 3.2.3].
2. The first statement follows fromTheorem3.2.5.4, the second fromLemma3.2.6 in [28], and the third from [26, Theorem

3.14].
3. Let a ∈ H and k, l ∈ L(a). If z, z ′ ∈ Z(a) with |z| = k and |z ′| = l, then |θ(z)| = k, |θ(z ′)| = l and

d
(
θ(z), θ(z ′)

)
≤ d(z, z ′), which implies that d

(
Zk
(
θ(a)

)
, Zl
(
θ(a)

))
≤ d

(
Zk(a), Zl(a)

)
. To verify the reverse inequality,

let z1, z2 ∈ Z(θ(a)) be given. We pick any z1 ∈ Z(a) with θ(z1) = z1. By [28, Proposition 3.2.3.3(c)], there exists a
factorization z2 ∈ Z(a) such that θ(z2) = z2 and d(z1, z2) = d(z1, z2). Since |zi| = |z i| for i ∈ {1, 2}, it follows that
d
(
Zk(a), Zl(a)

)
≤ d

(
Zk
(
θ(a)

)
, Zl
(
θ(a)

))
.

4. We recall that θ ′ ◦ θ is a transfer homomorphism (see the paragraph after [28, Definition 3.2.1]). Let a ∈ H . Let
z, z ′ ∈ ZH(a) with θ ′ ◦ θ(z) = θ ′ ◦ θ(z ′). Let z = θ(z) and z ′ = θ(z ′). We have z, z ′ ∈ ZB(θ(a)) and θ ′(z) = θ ′(z ′). Thus,
by the definition of c(θ(a), θ ′), there exist some k ∈ N0 and z = z0, . . . , zk = z ′ ∈ ZB(θ(a)) such that θ ′(zi) = θ ′(z) and
d(zi−1, zi) ≤ c(θ(a), θ ′) for each i ∈ [1, k]. Let z0 = z. Again, by [28, Proposition 3.2.3.3(c)], for each i < k, there exists some
factorization zi+1 ∈ ZH(a) such that θ(zi+1) = zi+1 and d(zi, zi+1) = d(zi, zi+1).
Now, we have θ(zk) = z ′ = θ(z ′). Thus, by the definition of c(a, θ), there exist some l ∈ N0 and zk = y0, . . . , yl =

z ′ ∈ ZH(a) such that θ(yi) = θ(z ′) and d(yi−1, yi) ≤ c(a, θ) for each i ∈ [1, l]. Since θ(yi) = θ(z ′) clearly implies
θ ′ ◦ θ(yi) = θ ′ ◦ θ(z ′), we get that the max{c(θ(a), θ ′), c(a, θ)}-chain z = z0, . . . , zk = y0, . . . , yl = z ′ has the required
properties. �

Monoids of zero-sum sequences. Let G be an additive abelian group, G0 ⊂ G a subset and F (G0) the free monoid with
basis G0. According to the tradition of combinatorial number theory, the elements of F (G0) are called sequences over G0.
Thus a sequence S ∈ F (G0)will be written in the form

S = g1 · . . . · gl =
∏
g∈G0

gvg (S),

andwe use all the notions (such as the length) as in general freemonoids. Again using traditional language, we refer to vg(S)
as themultiplicity of g in S and refer to a divisor of S as a subsequence. If T |S, then T−1S denotes the subsequence of S obtained
by removing the terms of T . We call the set supp(S) = {g1, . . . , gl} ⊂ G0 the support of S, σ(S) = g1 + · · · + gl ∈ G the
sum of S, and define

Σ(S) =
{∑
i∈I

gi | ∅ 6= I ⊂ [1, l]
}
⊂ G and, for k ∈ N,

Σk(S) =
{∑
i∈I

gi | I ⊂ [1, l], |I| = k
}
⊂ G.

We set −S = (−g1) · . . . · (−gl). If G = Z, then we define

S+ =
∏
g∈G+0

gvg (S) and S− =
∏
g∈G−0

gvg (S),

and thus we have S = S+S−0v0(S). The monoid

B(G0) = {S ∈ F (G0) | σ(S) = 0}

is called the monoid of zero-sum sequences over G0, and its elements are called zero-sum sequences over G0. A sequence
S ∈ F (G0) is zero-sum free if it has no proper, nontrivial zero-sum subsequence (note the trivial/empty sequence is defined
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to have sum zero). For every arithmetical invariant ∗(H) defined for a monoid H , we write ∗(G0) instead of ∗(B(G0)). In
particular, we set A(G0) = A(B(G0)). We denote the Davenport constant of G0 by

D(G0) = sup
{
|U|

∣∣ U ∈ A(G0)
}
∈ N0 ∪ {∞},

which is a central invariant in zero-sum theory (see [20], and also [25] for its relevance in factorization theory).
Clearly,B(G0) ⊂ F (G0) is saturated, and henceB(G0) is a Krull monoid. We note thatB(G0) ⊂ F (G0) is cofinal if and

only if for each g ∈ G0 there is a B ∈ B(G0) with vg(B) > 0 (see [28, Proposition 2.5.6]); if this is the case, then the set G0
is called condensed. For a condensed set G0, the class group ofB(G0) ↪→ F (G0) is 〈G0〉, and the subset of classes containing
prime divisors is G0.
For G0 ⊂ Z, we have that G0 is condensed if and only if either G+0 6= ∅ and G

−

0 6= ∅ or G0 ⊂ {0}. The latter case, which in
our context can be disregarded (see Lemma 3.3), is frequently automatically excluded by some of the conditions we impose
in our results; if not, we impose the extra condition |G0| ≥ 2.
Block monoids associated to Krull monoids.We will make substantial use of the following result [28, Section 3.4].
Lemma 3.3. Let H be a Krull monoid, ϕ : H → F = F (P) a cofinal divisor homomorphism, G = C(ϕ) its class group, and
GP ⊂ G the set of classes containing prime divisors. Let β̃ : F → F (GP) denote the unique homomorphism defined by β̃(p) = [p]
for all p ∈ P.

1. The homomorphism β = β̃ ◦ ϕ : H → B(GP) is a transfer homomorphism with c(H,β) ≤ 2. In particular, it has all the
properties mentioned in Lemma 3.2.

2. B(GP) ⊂ F (GP) is saturated and cofinal. If G is infinite cyclic, then GP ⊂ G is a condensed set and |GP | ≥ 2.

The homomorphism β in Lemma 3.3 is called the block homomorphism, andB(GP) is called the block monoid associated
to ϕ. If ϕ is a divisor theory, thenB(GP) is called the block monoid associated to H .
A lemma and four examples. The following lemma highlights the strong connection between the algebraic structure of a
Krull monoid and its class group and provides a realization result (see [28, Theorem 2.5.4]). Let G be an abelian group and
(mg)g∈G a family of cardinal numbers.We sayH has characteristic (G, (mg)g∈G) if there is a group isomorphism Φ : G→̃C(H)
such that card(P ∩ Φ(g)) = mg for every g ∈ G.

Lemma 3.4. Let G be an abelian group, (mg)g∈G a family of cardinal numbers and G0 = {g ∈ G | mg 6= 0}.
1. The following statements are equivalent:
(a) There exists a Krull monoid H and a group isomorphism Φ : G→ C(H) such that
card(P ∩ Φ(g)) = mg for every g ∈ G.

(b) G = [G0], and G = [G0 \ {g}] for every g ∈ G0 with mg = 1.
2. Two Krull monoids H and H ′ have the same characteristic if and only if Hred ∼= H ′red.

Apart from the above abstract realization result, there are many concrete and naturally occurring instances of Krull
monoids having infinite cyclic class group. We list a few such specific examples below.

Examples 3.5. 1. Domains. A domain R is a Krull domain if and only if its multiplicative monoid of nonzero elements is a
Krull monoid. As a special case of Claborn’s Realization Theorem, there is the following result: For every subset G0 ⊂ Zwith
[G0] = Z, there is a Dedekind domain R and an isomorphismΦ : G→ C(R) such thatΦ(G0) = {g ∈ C(R) | g ∩ X(R) 6= ∅}
([28, Theorem 3.7.8]. More results of this flavor are discussed in [28, Section 3.7] and [27, Section 5].
Let R be a domain and H a monoid such that the monoid domain R[H] is a Krull domain. There are a variety of results on

the class group of R[H], which provide many explicit monoid domains having infinite cyclic class group ([32, Section 16],
see also [40]). Generalized power series domains that are Krull are studied in [42].

2. Zero-sum sequences. Let G0 ⊂ Z be a subset such that [G0 \ {g}] = Z for all g ∈ G0. Then the monoid of zero-sum
sequences B(G0) is a Krull monoid with class group isomorphic to Z, and G0 corresponds to the set of classes containing
prime divisors [28, Proposition 2.5.6].

3. Module theory. Let R be a (not necessarily commutative) ring and C a class of (right) R-modules – closed under finite
direct sums, direct summands and isomorphisms – such that C has a set V (C) of representatives (that is, every module
M ∈ C is isomorphic to a unique [M] ∈ V (C)). Then V (C) becomes a commutative semigroup under the operation
[M] + [N] = [M ⊕ N], which carries detailed information about the direct-sum behavior of modules in C, e.g., whether or
not the Krull–Remak–Azumaya–Schmidt Theorem holds, and, when it does not, how badly it fails. If every module M ∈ C
has a semilocal endomorphism ring, then V(C) is a Krull monoid [10]. For situations where this condition is satisfied and
when the class group of V(C) is cyclic, we refer to recent work of Facchini, Hassler, Wiegand et al. (see, for example,
[46,12,11,13]).

4. Diophantine monoids. A Diophantine monoid is a monoid which consists of the set of solutions in nonnegative
integers to a system of linear Diophantine equations. In more technical terms, if m, n ∈ N and A ∈ Mm,n(Z), then
H = {x ∈ Nn0 | Ax = 0} is a Diophantine monoid. Moreover, H is a Krull monoid, and if m = 1, then its class group
is cyclic and there is a characterization of when it is infinite ([7, Theorem 1.3], [8, Proposition 4.3]; see also [28, Theorem
2.7.14] and [33, Chapter II.8]).
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4. Arithmetical properties equivalent to the finiteness of G+P or G−P

Before we formulate our main characterization result, Theorem 4.2, we recall a recent characterization of tameness,
which is in contrast with our present results. Let H be an atomic monoid. For an element b ∈ H , let ω(H, b) denote the
smallest N ∈ N0 ∪ {∞} with the following property:

For all n ∈ N and a1, . . . , an ∈ H , if b | a1 · . . . · an, then there exists a subsetΩ ⊂ [1, n] such that |Ω| ≤ N and

b
∣∣∣ ∏
ν∈Ω

aν .

Clearly, b ∈ H is a prime if and only if ω(H, b) = 1, and so the ω(H, ·) values measure how far away atoms are from being
primes. The invariant ω(H, ·) is closely related to the local tame degrees t(H, ·). A detailed study of their relationship can
be found in [30, Section 3], but here we mention only two simple facts (to simplify the formulation, we suppose that H is
reduced):

• ω(H, u) ≤ t(H, u) for all 1 6= u ∈ H which are not prime (this follows from the definition).
• sup{t(H, u) | u ∈ A(H)} <∞ if and only if sup{ω(H, u) | u ∈ A(H)} <∞ [31, Proposition 3.5].

The monoid H is said to be tame if the above suprema are finite. Note that the finiteness in Proposition 4.1.1 holds without
any assumption on GP . Indeed, it holds for all v-noetherian monoids [30, Theorem 4.2]. In particular, one should compare
Proposition 4.1.1, 4.1.2(c) and Theorem 4.2(b).

Proposition 4.1. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the
class group G = C(ϕ) is an infinite cyclic group that we identify with Z. Let GP ⊂ G denote the set of classes containing prime
divisors.

1. ω(H, u) <∞ for all u ∈ A(H).
2. If ϕ is a divisor theory, then the following statements are equivalent:
(a) GP is finite.
(b) D(GP) <∞.
(c) H is tame.

The equivalence of the three properties is a special case of [31, Theorem 4.2]. It is essential that the imbedding is a divisor
theory and not only a cofinal divisor homomorphism. Indeed, if G0 = {−1} ∪ N, then B(G0) ↪→ F (G0) is a cofinal divisor
homomorphism and D(G0) = ∞, yetB(G0) is factorial and hence tame (see also Lemmas 3.4 and 5.3).

Theorem 4.2. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the class
group G = C(ϕ) is an infinite cyclic group that we identify with Z. Let GP ⊂ G denote the set of classes containing prime divisors.
The following statements are equivalent:

(a) G+P or G
−

P is finite.
(b) H is locally tame, i.e., t(H, u) <∞ for all u ∈ A(Hred).
(c) The catenary degree c(H) is finite.
(d) The set of distances∆(H) is finite.
(e) The elasticity ρ(H) is a rational number.
(f) ρ2(H) is finite.
(g) There exists some M ∈ N such that, for each k ∈ N, we have ρk+1(H)− ρk(H) ≤ M.
(h) There exists some M ∈ N such that, for each k ∈ N, the set Vk(H) is an AAP with differencemin∆(H) and bound M.

We point out the crucial implications in the above result. Suppose that (a) holds. Then (b), (c), (e), (g) and (h) are strong
statements on the arithmetic ofH . The conditions (d) and (f) are veryweak arithmetical statements (indeed, the implications
(e)⇒ (f), (g)⇒ (f) and (h)⇒ (f) hold trivially in any atomic monoid). The crucial point is that (d) and (f) both imply (a). In
[1], it was first proved that (in the setting of Krull domains) (a) is equivalent to the finiteness of the elasticity ρ(H), and the
problem was put forward whether or not ρ(H)would always be rational; part (e) shows that this is indeed so. In [2], it was
recently shown that (a) is equivalent to (c) as well as to (d) (also in the setting of Krull monoids). We will give a complete
proof of all implications, not only because our setting is slightly more general – being valid for any divisor homomorphism
rather than divisor theory – but also because we need all the required tools regardless (in particular, for the monotone
catenary degree in Section 5), and thus little could be saved by not doing so.
Note, if the equivalent conditions of Theorem 4.2 hold, then [21, Theorem 4.2] implies that

lim
k→∞

|Vk(H)|
k
=

1
min∆(H)

(
ρ(H)−

1
ρ(H)

)
.

Under a certain additional assumption, the sets Vk(H) are even arithmetical progressions and not only AAPs [18, Theorem
3.1]; for more on the sets Vk(H), see [25, Theorem 3.1.3].
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As mentioned in the introduction, there are characterizations of arithmetical properties in various algebraic settings. In
most of them, the finiteness of the elasticity is equivalent to the finiteness of all ρk(H) (though this does not hold in all
atomic monoids). But in none of these settings is the finiteness of the elasticity equivalent to the finiteness of the catenary
degree. The reader may want to compare Proposition 4.1 and Theorem 4.2 with [28, Corollary 3.7.2], [38, Theorem 4.5] or
[30, Theorem 4.4].
The remainder of this section is devoted to the proof of Theorem 4.2. We start with the necessary preparations.

Lemma 4.3. Let G0 ⊂ Z be a condensed subset. Then

|U+| ≤ | infG0| for each atom U ∈ A(G0).

If in particular G0 is finite, then D(G0) ≤ maxG0 + |minG0|.

Proof. This is due to Lambert (see [43]); for a proof in the present terminology, see [2, Theorem 3.2]. �

Lemma 4.4. Let G0 ⊂ Z be a condensed subset such that G+0 is infinite. For each S ∈ F (G−0 ), there exists some U ∈ A(G0)with
S | U.

Proof. Let d = gcd(G−0 ). Then [G
−

0 ] ⊂ −dN and there exists some g ∈ N such that−gd − dN ⊂ [G
−

0 ]. Since G
+

0 is infinite,
let b ∈ G+0 with b > |σ(S)| + gd, and let β ∈ [1, d] be minimal such that βb ∈ dN. By the definition of g , there exists some
S ′ ∈ F (G−0 ) such that σ(S

′) = −(βb− |σ(S)|) = −(βb+ σ(S)). Thus, σ(bβSS ′) = 0 and, by the minimality of β , it follows
that bβSS ′ is an atom. �

The next lemma uses ideas from the proof of Theorem 3.1 in [2]. It will be used for the investigation of the catenary
degree as well as for the monotone catenary degree (Proposition 5.8).

Lemma 4.5. Let G0 ⊂ Z be a condensed subset such that G−0 is finite and nonempty. Let A ∈ B(G0) be nontrivial and
z, z ∈ Z(A) with |z| ≤ |z|. Then there exists a U ∈ A(G0) with U | z and a factorization ẑ ∈ Z(A) ∩ UZ(G0) such that
d(z, ẑ) ≤

(
|minG0| + |G−0 |

2
)
|minG0|.

Proof. Let z = U1 · . . . · Um and z = V1 · . . . · Vl where l,m ∈ N and U1, . . . ,Um, V1, . . . , Vl ∈ A(G0). We proceed in two
steps. Note that we may assume 0 - A, else the lemma is trivial taking U = 0 and ẑ = z.

1. We assert that there is an i ∈ [1,m] and a set I ⊂ [1, l] such that

|I| ≤ |minG0| + |G−0 |
2 and Ui

∣∣∣ ∏
ν∈I

Vν .

We assume l > |G−0 |, since otherwise the claim is obvious. Since
m∑
i=1

max
{vg(Ui)
vg(A)

| g ∈ G−0
}
≤

m∑
i=1

∑
g∈G−0

vg(Ui)
vg(A)

=

∑
g∈G−0

( 1
vg(A)

m∑
i=1

vg(Ui)
)
= |G−0 |,

there exists an i ∈ [1,m] such that

vg(Ui)
vg(A)

≤
|G−0 |
m
. (4.1)

For each g ∈ G−0 , there is an Ig ⊂ [1, l]with |Ig | = |G
−

0 | such that

vg
(∏
ν∈Ig

Vν
)
≥
|G−0 |vg(A)

l
.

Hence, since l ≤ m, it follows by (4.1) that

vg
(∏
ν∈Ig

Vν
)
≥
|G−0 |vg(A)

l
≥
mvg(Ui)
vg(A)

vg(A)
l
≥ vg(Ui).

Since by Lemma 4.3 we have |U+i | ≤ |minG0|, there is an I0 ⊂ [1, l]with |I0| ≤ |minG0| such that

vg(Ui) ≤ vg
(∏
ν∈I0

Vν
)
for all g ∈ G+0 .

Then, for I = I0∪
⋃
g∈G−0

Ig , we get vg(Ui) ≤ vg
(∏

ν∈I Vν
)
for each g ∈ G0, i.e.,Ui |

∏
ν∈I Vν . Noting that |I| ≤ |minG0|+|G

−

0 |
2,

the argument is complete.
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2. By part 1, we may suppose without restriction that U1 |
∏k
ν=1 Vν with k ≤

(
|minG0| + |G−0 |

2
)
. We consider a

factorization V1 · . . . · Vk = W1W2 · . . . ·Wn, where U1 = W1,W2, . . . ,Wn ∈ A(G0), and by Lemma 4.3,

n ≤ |(W1 · . . . ·Wn)+| = |(V1 · . . . · Vk)+|
≤ k |minG0| ≤

(
|minG0| + |G−0 |

2
)
|minG0|.

Now we set ẑ = W1 · . . . ·WnVk+1 · . . . · Vl and get

d(z, ẑ) ≤ max{k, n} ≤
(
|minG0| + |G−0 |

2)
|minG0|. �

Lemma 4.6. Let G0 ⊂ Z be a condensed set such that G−0 is finite and nonempty.
1. There exists some M ∈ N such that ρk+1(G) ≤ 1+ kM for each k ∈ N0. More precisely,
(a) if G0 is infinite, then for each k ∈ N,

1 ≤ ρk+1(G0)− ρk(G0) ≤ 2 |minG0|.

(b) if G0 is finite, then for each k ∈ N,

1 ≤ ρk+1(G0)− ρk(G0) ≤ D(G0)− 1.

2. For each k ∈ N,
−1 ≤ λk(G0)− λk+1(G0) <

(
|minG0| + |G−0 |

2)
|minG0|.

Proof. 1. We recall that ρ1(G0) = 1. Let k ∈ N and U1, . . . ,Uk, V1, . . . , Vl ∈ A(G0) with U1 · . . . · Uk = V1 · . . . · Vl. By
Lemma 4.3, it follows that l ≤ |(U1 · . . . · Uk)+| =

∑k
i=1 |U

+

i | ≤ k · |minG
−

0 |, and thus ρk(G0) ≤ k · |minG
−

0 | <∞.
1(a) The left inequality is trivial and it remains to verify the right inequality. Let m = |minG0|. Let l ∈ N, and let
A1, . . . , Ak+1,U1, . . . ,Ul ∈ A(G0) be such that

A1 · . . . · Ak+1 = U1 · . . . · Ul .

We claim that l ≤ ρk(G0) + 2m; then we have ρ2k+1(G0) ≤ ρk(G0) + 2m. By Lemma 4.3, we know that |A+| ≤ m for each
A ∈ A(G0). Thus, we may assume that (AkAk+1)+ | U1 · . . . · U2m. Then (

∏l
j=2m+1 Uj)

+
|
∏k−1
i=1 Ai. Let S = (

∏l
j=2m+1 Uj)

−.
By Lemma 4.4, there exists some A′k ∈ A(GP) with S | A′k. We consider B = (

∏k−1
i=1 Ai)A

′

k, which is a product of k atoms. We
observe that

∏l
j=2m+1 Uj | B. Thus, max L(B) ≥ l− 2m, establishing the claim.

1(b) This follows from [31, Proposition 3.6] (see also Lemma 4.3 in that paper and note that D(G0) ≥ 2).
2. The left inequality is trivial and it remains to verify the right inequality. Let s = λk+1(G0) and letU1, . . . ,Us, A1, . . . , Ak+1 ∈
A(G0) be such that

U1 · . . . · Us = A1 · . . . · Ak+1.

After renumbering if necessary, Lemma 4.5 implies that A1 |U1 · . . . · Uj and U1 · . . . · Uj = A1W2 · . . . · Wi with
W1, . . . ,Wi ∈ A(G0) and i ≤

(
|minG0| + |G−0 |

2
)
|minG0| = M2 (note that in order to apply Lemma 4.5, we used that

s ≤ k+ 1). Then

W2 · . . . ·WiUj+1 · . . . · Us = A2 · . . . · Ak+1,

and hence

λk(G0) ≤ min L(A2 · . . . · Ak+1) ≤ min L(Uj+1 · . . . · Us)+min L(W2 · . . . ·Wi)
≤ s− j+ i− 1 ≤ λk+1(G0)+ (M2 − 1). �

We continue with a lemma that is used when investigating the sets of distances and local tameness. To simplify the
formulation, we introduce the following notation. For a ∈ −N and b ∈ N, let Va,b denote the unique atom with support
{a, b}, that is Va,b = aαbβ with α = lcm(a, b)/|a| and β = lcm(a, b)/b.

Lemma 4.7. Let G0 ⊂ Z and let v ∈ N. Suppose there exist distinct a, a2 ∈ G−0 and b, b1 ∈ G
+

0 that satisfy b1 ≥ b|a| and
|a2| ≥ (vb1+ b)|a|. For a given z ∈ Z((Va,b1Va2,b)

v), let z0 be the (unique) minimal divisor of z such that va2(π(z
−1
0 z)) = 0, and

let t(z) = vb1(π(z0)). Then,

|z| ∈
[

b1
lcm(a, b)

t(z)− D,
b1

lcm(a, b)
t(z)+ D

]
where D = v(b+ |a|) gcd(a, b).

Moreover, if t(z) = 0, then z = V va,b1 · V
v
a2,b
.

Since it is relevant in applications of this lemma, we point out that D depends neither on a2 nor on b1.

Proof. To simplify notation without suppressing the information on the origin of certain quantities, we set α = va(Va,b),
α1 = va(Va,b1), and α2 = va2(Va2,b). Likewise, we set β = vb(Va,b), β1 = vb1(Va,b1), and β2 = vb(Va2,b).
From the explicit descriptions given or by applying Lemma 4.3, we get β, β1 ∈ [1, |a|] and α, α2 ∈ [1, b].
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Let z = U1 · . . . · Um, where U1, . . . ,Um ∈ A(G0), and k, l ∈ [1,m]with k ≤ l be such that

• a2 |Uν for each ν ∈ [1, k],
• a2 - Uν and b1 |Uν for each ν ∈ [k+ 1, l], and
• a2 - Uν and b1 - Uν for each ν ∈ [l+ 1,m];

in particular, z0 = U1 · . . . · Uk ∈ Z(G0). Also note that Uν = Va,b for each ν ∈ [l+ 1,m].
For ν ∈ [1, k], we have

Uν = a
αν,2
2 aαν,1bβν,11 bβν,2 ,

where αν,2 ∈ N and αν,1, βν,1, βν,2 ∈ N0. By the assumption on |a2| and since β, β1 ∈ [1, |a|], we have |a2| ≥ vβ1b1 + βb.
Thus, in view of vb1(π(z)) = β1v, it follows that βν,2 ≥ β . Hence αν,1 ≤ α−1, since otherwise Va,b | Uν , which is impossible
(as a2|Uν).
Let α′2 = va(π(z0)) and β ′2 = vb(π(z0)). In view of αν,1 ≤ α − 1, k ≤ vα2 and α, α2 ∈ [1, b], we have 0 ≤ α′2 ≤ vb

2.
We note that σ(π(z0)−) = vα2a2 + α′2a, and thus

t(z)b1 + β ′2b = vα2|a2| + α
′

2|a|,

i.e., β ′2 = b
−1(vα2|a2| + α′2|a| − t(z)b1). In particular, note that if t(z) = 0, then, since

σ(bvb(π(z))) = v · σ(bvb(Va2,b)) = −v · σ(a
va2 (Va2,b)
2 )

implies vb((Va,b1Va2,b)
v) = b−1(vα2|a2|), it follows that α′2 = 0 and z0 = V

v
a2,b
; this establishes the ‘‘moreover’’-statement.

Consequently,

b−1(vα2|a2| − t(z)b1) ≤ β ′2 ≤ b
−1(vα2|a2| + vb2|a| − t(z)b1). (4.2)

For ν ∈ [k+ 1, l], we have

Uν = b
β ′′
ν,1
1 bβ

′′
ν,2aα

′′
ν,1 ,

with β ′′ν,1 ∈ N and α
′′

ν,1, β
′′

ν,2 ∈ N0. We have α
′′

ν,1|a| ≥ b1. Thus, by the assumption on b1 and since α ∈ [1, b], we get
α′′ν,1 ≥ α, and hence β

′′

ν,2 ≤ β − 1 (as otherwise Uν = Va,b with b1|Uν but b1 - Va,b, a contradiction).
Let β ′′2 = vb(

∏l
ν=k+1 Uν). We note that l − k ≤ vb1((Va,b1Va2,b)

v) − t(z) = vβ1 − t(z) ≤ v|a| − t(z) ≤ v|a|. Thus, we
obtain that

0 ≤ β ′′2 ≤ (l− k)(β − 1) ≤ v|a|(β − 1) ≤ v|a|
2. (4.3)

Let β ′′′2 = vb(
∏m
ν=l+1 Uν). We have

β ′′′2 = vb((Va,b1Va2,b)
v)− β ′2 − β

′′

2 = vβ2 − β
′

2 − β
′′

2 .

In combination with (4.2) and (4.3), we get that

vβ2 − b−1
(
vα2|a2| + vb2|a| − t(z)b1

)
− v|a|2 ≤ β ′′′2 ≤ vβ2 − b

−1(vα2|a2| − t(z)b1).
Thus, since β2 = b−1α2|a2| (in view of Va2,b = a

α2
2 b

β2 ), it follows that

β ′′′2 ∈
b1
b
t(z)+ [−vb|a| − v|a|2, 0]. (4.4)

Since Uν = Va,b for each ν ∈ [l+ 1,m], it follows that β ′′′2 = (m− l)β . Since k ∈ [0, vb] and l− k ∈ [0, v|a|], we get that
m ∈ (m− l)+ [0, v(b+ |a|)]. Combining with β ′′′2 = (m− l)β and (4.4) then yields

m ∈
[
b1
bβ
t(z)−

vb|a| + v|a|2

β
,
b1
bβ
t(z)+ v(b+ |a|)

]
,

and, since β ≤ |a|, we have v(b+ |a|) ≤ v(b+ |a|)|a|/β . Substituting the explicit value of β , the claim follows. �

The following proposition is a major portion of Theorem 4.2.

Proposition 4.8. Let G0 ⊂ Z be a condensed set such that G−0 is finite and nonempty. Then ρ(G0) is a rational number.

To prove this result, we need the concept of factorizations with respect to a (not necessarily minimal) generating set.
This idea is also used in the recent paper [6], where a generalized set of distances is studied for numerical monoids.
Let H be a monoid and S ⊂ Hred \ {1} a subset. We call ZS(H) = F (S) the factorization monoid of H with respect to S.

The homomorphism π SH = π
S
: ZS(H)→ Hred defined by π S(z) =

∏
u∈S u

vu(z) is called the factorization homomorphism of
H with respect to S. For a ∈ H , we set ZSH(a) = ZS(a) = (π S)−1(aH×); we call this the set of factorizations in S of a. The set
LS(a) = {|z| | z ∈ ZS(a)} is called the set of lengths of awith respect to S.
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We note that ZS(a) 6= ∅ for each a ∈ H if and only if S generates Hred (as a monoid). If S generates Hred, thenA(Hred) ⊂ S
by [28, Proposition 1.1.7]. If S = A(Hred), then ZS(a) = Z(a), and all other notions coincide with the usual ones. Suppose
that S ⊂ Hred is a generating set. For a ∈ H , let ρS(a) = ρ(LS(a)) denote the elasticity of a with respect to S, and
ρS(H) = sup{ρS(a) | a ∈ H} the elasticity of H with respect to S; note that 0 ∈ LS(a) if and only if LS(a) = {0}, i.e.,
a ∈ H×. We say that the elasticity of H with respect to S is accepted if there exists some a ∈ H with ρS(a) = ρS(H).
The proof of the following result is a direct modification of the one for the (usual) elasticity of finitely generatedmonoids

([28, Theorem 3.1.4]) and contains it as the special case S = A(Hred).
Lemma 4.9. Let H be amonoid and S ⊂ Hred \{1} a finite generating set of Hred. Then ρS(H) is finite, accepted and, in particular,
rational.
Proof. By construction, ZS(H)×ZS(H) is a finitely generated free monoid. Obviously, Z = {(x, y) ∈ ZS(H)×ZS(H) | π S(x) =
π S(y)} is a saturated submonoid, thus finitely generated by [28, Proposition 2.7.5]. Let Z• = Z \ Z×; clearly |Z×| = 1 and,
for each (x, y) ∈ Z•, we have that both |x| 6= 0 and |y| 6= 0. We note that ρS(H) = sup{|x|/|y| | (x, y) ∈ Z•}. We assert that
sup{|x|/|y| | (x, y) ∈ Z•} = sup{|x|/|y| | (x, y) ∈ A(Z)}. SinceA(Z) is finite, this implies the result.
Let s = (xs, ys) ∈ Z• and let s = t1 · . . . · tl with ti = (xi, yi) ∈ A(Z) be a factorization of s in the monoid Z . We have,

using the standard inequality for the mediant,

|xs|
|ys|
=

l∑
i=1

|xi|

l∑
i=1

|yi|

≤ max
{
|xi|
|yi|
| i ∈ [1, l]

}
,

showing that sup{|x|/|y| | (x, y) ∈ Z•} ≤ sup{|x|/|y| | (x, y) ∈ A(Z)}. The other inequality being trivial, the claim
follows. �

For a condensed set G0 ⊂ Zwith |G0| ≥ 2, we define
B(G0)+ = {B+ | B ∈ B(G0)} andA(G0)+ = {A+ | A ∈ A(G0)}.

Lemma 4.10. Let G0 ⊂ Z be a condensed set with |G0| ≥ 2.
1. B(G0)+ ⊂ F (G+0 ) is a submonoid.
2. A(G0)+ is a generating set ofB(G0)+.
3. |F | ≤ | infG−0 | for each F ∈ A(G0)+.
Proof. The first two claims are immediate, and the last one is a direct consequence of Lemma 4.3. �

Clearly,A(G0)+ containsA(B(G0)+), the set of atoms ofB(G0)+, yet it is in general not equal to this set. By definition,
we have that F ∈ A(G0)+ if and only if there exists some A ∈ A(G0) such that F = A+, yet F ∈ A(B(G0)+) if and only if we
have B ∈ A(G0) for each B ∈ B(G0)with F = B+. Moreover,B(G0)+ is in general not a saturated submonoid of F (G+0 ).
The following technical result is used to partitionA(G0) into finitely many classes.

Lemma 4.11. Let G0 ⊂ Z be a condensed set such that G−0 is finite and nonempty. Let F ∈ F (G+0 ), g ∈ supp(F) with
g ≥ |G−0 | |minG

−

0 | lcm(G
−

0 ), and let g
′
= g+k lcm(G−0 ) ∈ G

+

0 where k ∈ N. Then F ∈ A(G0)+ if and only if g ′g−1F ∈ A(G0)+.

Proof. We set T = g ′g−1F ∈ F (G+0 ). Suppose F ∈ A(G0)+. Let R ∈ F (G−0 ) such that FR ∈ A(G0). Since σ(F) ≥ g ≥
|G−0 | |minG

−

0 | lcm(G
−

0 ), there exists some a ∈ G
−

0 such that va(R) ≥ lcm(G
−

0 ). Let R1 = Ra
k lcm(G−0 )/|a|. Then TR1 ∈ B(G0).

Assume to the contrary that TR1 is not an atom, say TR1 = (T ′R′1)(T
′′R′′1), where g

′
| T ′, T = T ′T ′′ and R1 = R′1R

′′

1 . Let l
′
∈ N0

be maximal such that al
′ lcm(G−0 )/|a| | R′1 and let l = min{l

′, k}. We note that a−l lcm(G
−

0 )/|a|R′1 | R. Moreover, since

|σ(a−l lcm(G
−

0 )/|a|R′1)| ≥ g
′
− l lcm(G−0 ) ≥ (k− l) lcm(G

−

0 )+ |G
−

0 | |minG
−

0 | lcm(G
−

0 )

≥ (k− l) · lcm(G−0 )+
∑
x∈G−0

|x|
(
lcm(G−0 )
|x|

− 1
)
,

there exists a subsequence R′2 | a
−l lcm(G−0 )/|a|R′1 such that σ(R

′

2) = −(k− l) lcm(G
−

0 ). We set R0 = R
′−1
2 a

−l lcm(G−0 )/|a|R′1. Then
σ(R0) = σ(R′1)+ k lcm(G

−

0 ). Thus σ(gg
′−1T ′R0) = 0, yet gg ′−1T ′R0 | FR, contradicting that TR1 is not an atom.

Suppose T ∈ A(G0)+. Let R′ ∈ F (G−0 ) be such that TR
′
∈ A(G0). Since

−σ(R1) = σ(T ) ≥ g ′ ≥ k · lcm(G−0 )+ |G
−

0 | |minG
−

0 | lcm(G
−

0 ) ≥ k · lcm(G
−

0 )+
∑
x∈G−0

|x|
(
lcm(G−0 )
|x|

− 1
)
,

there exists a subsequence R′1 | R
′ with σ(R′1) = −k · lcm(G

−

0 ). Let R = R
′−1
1 R

′. Then FR is a zero-sum sequence. Assume FR
is not an atom, say FR = (F ′R′2)(F

′′R′′2), where g | F
′, F = F ′F ′′ and R = R′2R

′′

2 . Then g
′g−1F ′R′2R

′

1 | TR
′ and it is a zero-sum

sequence, contradicting that FR is not an atom. �
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Let G0 ⊂ Z \ {0} be a condensed set such that G−0 is finite and nonempty. In view of Lemma 4.11, we introduce the
following relation on G+0 . For g, h ∈ G

+

0 , we say that g is equivalent to h if g = h or if g, h ≥ |G
−

0 | |minG
−

0 | lcm(G
−

0 ) and
g ≡ h mod lcm(G−0 ). This relation is an equivalence relation and it partitions G

+

0 into finitely many – namely, less than
|G−0 | |minG

−

0 | lcm(G
−

0 ) + lcm(G
−

0 ) – equivalence classes; we denote the equivalence class of g by κ(g) and also use κ to
denote the extension of this map to F (G+0 ).
We note that κ(A(G0)+) is a finite set, since it consists of sequences over the finite set κ(G+0 ) and the length of each

sequence is at most |minG−0 | by Lemma 4.10. Moreover, it is a generating set of the monoid κ(B(G0)
+).

In order to study factorizations, we extend κ to Z(G0) via

κ(A1 · . . . · Al) = κ(A+1 ) · . . . · κ(A
+

l ).

This is an element of F (κ(A(G0)+)), i.e., Zκ(A(G0)
+)(κ(B(G0)+)); for brevity, we denote this factorization monoid by Zκ .

Likewise, for F ∈ κ(B(G0)+), we denote Zκ(A(G0)
+)(F) by Zκ(F); πκ(A(G0)

+) by πκ ; and ρκ(A(G0)
+) by ρκ . The homomorphism

κ : Z(G0)→ Zκ is epimorphic.
We note that, for B ∈ B(G0), we have that κ(Z(B)) ⊂ (πκ)−1(κ(B+)), and in general, this is a proper inclusion. However,

we have, for each F ∈ B(G0)+, by Lemma 4.11,

(πκ)−1(κ(F)) =
⋃

B∈B(G0), B+=F

κ(Z(B)), (4.5)

whenever G0 ⊂ Z \ {0} is condensed with G−0 finite and nonempty.

Lemma 4.12. Let G0 ⊂ Z \ {0} be a condensed set such that G−0 is finite and nonempty.

1. For each B ∈ B(G0), we have ρ(B) ≤ ρκ(κ(B+)). In particular, ρ(G0) ≤ ρκ(κ(B(G0)+)).
2. If G0 is infinite, then ρ(G0) = ρκ(κ(B(G0)+)).

Proof. 1. Let B ∈ B(G0) \ {1}, x, y ∈ Z(B) with |x| = max L(B) and |y| = min L(B). Since κ(x), κ(y) ∈ Zκ(κ(B+)), we have
that ρ(B) = |x|/|y| = |κ(x)|/|κ(y)| ≤ ρκ(κ(B+)). The additional claim is clear.
2. By part 1, it remains to show that ρ(G0) ≥ ρκ(κ(B(G0)+)).
By Proposition 4.9 and since κ(A(G0)+) is finite, we know that ρκ(κ(B(G0)+)) is accepted. Let Bκ ∈ κ(B(G0)+) be such

that ρκ(Bκ) = ρκ(κ(B(G0)+)), and let xκ , yκ ∈ Zκ(Bκ) be such that |xκ |/|yκ | = ρκ(Bκ). By (4.5), we know that there
exist Bx, By ∈ B(G0) with B+x = B

+
y , x ∈ Z(Bx) with κ(x) = xκ , and y ∈ Z(By) with κ(y) = yκ ; in particular, we have

κ(B+x ) = κ(B
+
y ) = Bκ .

Let n ∈ N. Since G+0 is infinite, Lemma 4.4 yields some Un ∈ A(G0) with (Bnx)
−
| Un. We set Dn = BnyUn and note that,

since (Bnx)
+
= (Bny)

+ and (Bnx)
−
|U−n , the sequence B

n
x is a proper subsequence of Dn. Thus,

min L(Dn) ≤ |yn| + 1 = n|yκ | + 1 and max L(Dn) ≥ |xn| + 1 = n|xκ | + 1.

So we get

ρ(Dn) ≥
n|xκ | + 1
n|yκ | + 1

.

Thus, for each n ∈ N,

ρ(G0) ≥
n|xκ | + 1
n|yκ | + 1

,

and letting n→∞, we have

ρ(G0) ≥
|xκ |
|yκ |
= ρκ(κ(B(G0)+)). �

Proof of Proposition 4.8. Since ρ(G0) = ρ(G0 \ {0}), we may assume that 0 /∈ G0.
If G0 is finite, then B(G0) is finitely generated [28, Theorem 3.4.2.1], and thus the elasticity is rational by Lemma 4.9

(appliedwith S = A(Hred)). SupposeG0 is infinite. By Lemma4.12,wehave thatρ(G0) = ρκ(κ(B(G0)+)), and by Lemma4.9,
we know that ρκ(κ(B(G0)+)) is rational. �

Proof of Theorem 4.2. (a) ⇒ (b) SinceB(GP) andB(−GP) are isomorphic, wemay without restriction suppose that G−P is
finite. Let u ∈ A(Hred). We have to show that t(H, u) <∞. If u is prime, then t(H, u) = 0. Suppose that u is not prime. Let
a ∈ H and a′ = aH× be such that u | a′. Let z = v1 · . . . ·vn ∈ Z(a). There is aminimal subsetΩ ⊂ [1, n], sayΩ = [1, k], such
that u | v1 · . . . · vk and k ≤ |ϕred(u)|. We consider any factorization of v1 · . . . · vk containing u, say v1 · . . . · vk = u1 · . . . · ul,
where u = u1, . . . , ul ∈ A(Hred).
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For i ∈ [1, k] and j ∈ [1, l], we set Vi = β(vi) and Uj = β(uj). Then U1, . . . ,Ul, V1, . . . , Vk ∈ A(GP). Since u is not a prime
andΩ is minimal, it follows that 0 - V1 · . . . · Vk. Hence, for every j ∈ [1, l], Uj contains an element from G+P , and Lemma 4.3
implies that

l ≤ |(U1 · . . . · Ul)+| = |(V1 · . . . · Vk)+| ≤ k |minG−P | ≤ |ϕred(u)| |minG
−

P |.

Setting z ′ = u1 · . . . · ulvk+1 · . . . · vn, we infer that d(z, z ′) ≤ max{k, l} ≤ |ϕred(u)| |minG−P |, and hence t(H, u) ≤
|ϕred(u)| |minG−P |.

(a) ⇒ (c) Without restriction, we may suppose that G−P is finite. By Lemma 3.3, it suffices to show that c(GP) <∞. We
set M =

(
|minGP | + |G−P |

2
)
|minGP |, and assert that c(A) ≤ M for all A ∈ B(GP). To do so, we proceed by induction

on max L(A). If A ∈ B(GP) with max L(A) ≤ M , then c(A) ≤ max L(A) ≤ M . Let A ∈ B(GP), let z, z ∈ Z(A) with
|z| ≤ |z|, and suppose that c(B) ≤ M for all B ∈ B(GP) with max L(B) < max L(A). By Lemma 4.5, there is a U ∈ A(GP)
and a factorization ẑ ∈ Z(A) ∩ UZ(GP) such that U | z and d(z, ẑ) ≤ M , say ẑ = Uŷ and z = Uy with ŷ, y ∈ Z(B)
and B = U−1A. Since max L(B) < max L(A), there is an M-chain ŷ = y0, . . . , yk = y of factorizations of B, and hence
z, ẑ = Uy0,Uy1, . . . ,Uyk = Uy = z is anM-chain of factorizations concatenating z and z.
(a) ⇒ (e) Without restriction, we may suppose that G−P is finite. The claim follows by Proposition 4.8 and Lemma 3.3.
(c) ⇒ (d) and (e) ⇒ (f) hold for all atomic monoids [28, Proposition 1.4.2 and Theorem 1.6.3].
(b) ⇒ (a), (d) ⇒ (a), and (f) ⇒ (a) Assume to the contrary that G+P and G

−

P are both infinite. We show that B(GP) is
not locally tame, which implies that H is not locally tame [28, Theorem 3.4.10.6]. Along the way, we show that ρ2(GP) = ∞
and that∆(GP) is infinite, which by Lemma 3.3 implies the according statements for H .
We set a = maxG−P and b = minG

+

P . Using the notation of Lemma 4.7, let U = Va,b = a
αbβ ∈ A(GP). We pick an

arbitrary N ∈ N≥2 and show that t(GP ,U) ≥ N , which implies the assertion.
We intend to apply Lemma 4.7 with v = 1. Thus, let D = |a|(b+ |a|) gcd(a, b), let b1 ∈ G+P be such that

b1
lcm(a, b)

≥ N + D,

and let a2 ∈ G−P be such that |a2| ≥ (b1 + b)|a|. Let α1, α2, β1, β2 ∈ N be such that Va,b1 = a
α1bβ11 and Va2,b = a

α2
2 b

β2 are
elements ofA(GP).
We note that all conditions of Lemma 4.7 with v = 1 are fulfilled. Since α ≤ b ≤ α1 and β ≤ |a| ≤ β2, we have

U | Va,b1Va2,b, and therefore Z(Va,b1Va2,b) ∩ UZ(GP) 6= ∅. Let z ∈ Z(Va,b1Va2,b) \ {Va,b1 · Va2,b1}, which exists in view of
U|Va,b1Va2,b. By Lemma 4.7, we get that t(z) 6= 0, and thus that

|z| ≥
b1

lcm(a, b)
− D ≥ N.

This shows that max∆
(
L(Va,b1Va2,b)

)
≥ N − 2, t(Gp,U) ≥ N and

ρ2(GP) ≥ max L(Va,b1Va2,b) ≥ N.

(a) ⇒ (g) This follows from Lemma 4.6.
(g) ⇒ (f) We have ρ2(H) ≤ M + ρ1(H) = M + 1, whereM is as given by (g).
(a) ⇒ (h) If (a) holds, then (d) and (g) hold. Thus all assumptions of [21, Theorem 4.2] are fulfilled, and (h) follows.
(h) ⇒ (f) We have ρ2(H) = supV2(H) <∞. �

5. Arithmetical Properties stronger than the finiteness of G+P or G−P

Let H be a Krull monoid and GP ⊂ G as always (see Theorem 5.2). In this section, we discuss arithmetical properties
which are finite if GP is finite or min{|G+P |, |G

−

P |} = 1, and whose finiteness implies that G
+

P or G
−

P is finite. However, it will
turn out that none of the implications can be reversed (with the possible exception (c)⇒ (b4), which remains open), and
that the finiteness of these properties cannot be characterized by the size of G+P and G

−

P but also depends on the structure
of these sets. We start with some definitions and then formulate the main result.

Definition 5.1. Let H be an atomic monoid and π : Z(H)→ Hred the factorization homomorphism.

1. For z ∈ Z(H), we denote by δ(z) the smallest N ∈ N0 with the following property: if k ∈ N is such that k and |z| are
adjacent lengths of L

(
π(z)

)
, then

d(z, Zk(a)) ≤ N.

Globally, we define

δ(H) = sup{ δ(z) | z ∈ Z(H)} ∈ N0 ∪ {∞},

and we call δ(H) the successive distance of H .
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2. We say that the Structure Theorem for Sets of Lengths holds (for themonoidH) ifH is atomic and there exist someM ∈ N0
and a finite, nonempty set ∆∗ ⊂ N such that, for every a ∈ H , the set of lengths L(a) is an AAMP with some difference
d ∈ ∆∗ and bound M . In that case, we say more precisely that the Structure Theorem for Sets of Lengths holds with set
∆∗ and boundM .

Theorem 5.2. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the
class group G = C(ϕ) is an infinite cyclic group that we identify with Z. We denote by GP ⊂ G the set of classes containing prime
divisors and consider the following conditions:

(a) GP is finite or min{|G+P |, |G
−

P |} = 1.

(b1) The Structure Theorem for Sets of Lengths holds for H with set∆(GP).
(b2) The successive distance δ(H) is finite.
(b3) The monotone catenary degree cmon(H) is finite.
(b4) There is an M ∈ N such that, for all a ∈ H and for each two adjacent lengths k, l ∈ L(a)∩ [min L(a)+M, max L(a)−M],

we have d
(
Zk(a), Zl(a)

)
≤ M.

(c) G+P or G
−

P is finite.

Then we have

1. Condition (a) implies each of the conditions (b1) to (b4).
2. Each of the conditions (b1) to (b4) implies (c).
3. (b2)⇒ (b3)⇒ (b4).

Webriefly discuss the newly introduced arithmetical properties and point out the trivial implications in the above result.
The successive distance of H was introduced by Foroutan in [14] in order to study the monotone catenary degree. For Krull
monoids with finite class group, an explicit upper bound for the successive distance was recently given in [19, Theorem
6.5]. Note that, by definition, δ(H) < ∞ implies that ∆(H) is finite. The significance of the Structure Theorem for Sets of
Lengths will be discussed at the beginning of Section 6. Note that, if it holds for a monoid H , then H is a BF-monoid with
finite set of distances ∆(H). Moreover, if GP = Z, then the Structure Theorem fails badly: indeed, then every finite subset
L ⊂ N≥2 occurs as a set of lengths by Kainrath’s Theorem [28, Theorem 7.4.1]; for recent progress in this direction see
[9]. The implications (b2)⇒ (b4) and (b3)⇒ (b4) follow from the definitions. A condition implying (b1) as well as (b4) is
given in Proposition 6.2. The bound M in (b4) reflects the fact that in many settings, factorizations z of an element a ∈ H
showmore unusual phenomena if their length |z| is close either to max L(a) or to min L(a) (the reader may want to consult
[28, Theorem 4.9.2], [16, Theorem 3.1], [17, Theorem 3.1] and the associated examples showing the relevance of the bound
M).
In Sections 6 and 7, we obtain results showing that even under the more restrictive assumption that ϕ is a divisor

theory, the Conditions (b1) to (b4) do not imply (a) (Proposition 6.9), and (c) does not imply (b1) to (b3) (Theorem 6.4,
Propositions 6.9, 6.10 and 7.1). Proposition 6.10 shows that (b3) does not imply (b2). Moreover, (b1), (b2) and (b3) may
hold as well as may fail even if min{|G+P |, |G

−

P |} = 2. Most of the observed phenomena (around the non-reversibility of
implications) have not been pointed out before in any v-noetherian monoid, and in particular not in any Krull monoid.
Finally, by Theorem 5.2, a Krull monoid H satisfies strong arithmetical properties both when GP is finite and when
min{|G+P |, |G

−

P |} = 1. Note that an arithmetical difference between these two cases was pointed out in Proposition 4.1.
The remainder of this section is devoted to the proof of Theorem 5.2, which heavily uses Theorem 4.2. We start

with the necessary preparations. To show that (a) implies each of the Conditions (b1) to (b4), we will construct transfer
homomorphisms to finitely generated monoids.

Lemma 5.3. Let G0 ⊂ Z be a condensed set withmin{|G+0 |, |G
−

0 |} = 1, say G
−

0 = {−n}. The map

ϕ :

{
B(G0)→ F (G0 \ {−n})
B 7→ (−n)−v−n(B)B

is a cofinal divisor homomorphism. Its class group C(ϕ) is isomorphic to a subgroup of Z/nZ, and the set of classes containing
prime divisors corresponds to {b+ nZ | b ∈ G0 \ {−n}}. In particular, the class group of the Krull monoidB(G0) is a finite cyclic
group.

Proof. Clearly, ϕ is a cofinal monoid homomorphism. In order to show that ϕ is a divisor homomorphism, let A, B ∈ B(G0)
be such that ϕ(A) | ϕ(B). We have to verify that A | B, and for that it suffices to check that v−n(A) ≤ v−n(B). For each
C ∈ B(G0), we have v−n(C) = σ(C+)/n and σ(C+) = σ(ϕ(C)). Since ϕ(A) | ϕ(B), we have σ(ϕ(A)) ≤ σ(ϕ(B)), and thus
v−n(A) ≤ v−n(B) follows.
Now, we show that, for F1, F2 ∈ F (G0 \ {−n}), we have F1 ∈ F2q(ϕ(B(G0))) if and only if σ(F1) ≡ σ(F2) mod n. This

establishes the results regarding C(ϕ) and the set of classes containing prime divisors.
First, suppose that σ(F1) ≡ σ(F2) mod n. We note that FiF n−1j (−n)(σ (Fi)+(n−1)σ (Fj))/n ∈ B(G0), for i, j ∈ {1, 2}. Thus, F nj

and FiF n−1j are elements of ϕ(B(G0)) for i, j ∈ {1, 2}. Since F1 = F2(F1F n−12 )(F−n2 ), the claim follows. Since σ(ϕ(C)) ≡ 0
mod n for each C ∈ B(G0), the converse claim follows.
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By [28, Theorem 2.4.7], the class group of B(G0) is an epimorphic image of a subgroup of C(ϕ), and thus it is a finite
cyclic group. �

The following example shows that C(ϕ) can be a proper subgroup of Z/nZ and that C(ϕ) can be distinct from the class
group of B(G0). However, if [G0] = Z, then C(ϕ) = Z/nZ; and, applying [44, Theorem 3.1], there is a simple and explicit
method to determine the class group of B(G0) from C(ϕ) as well as the subset of classes containing prime divisors (note
that C(ϕ) is a torsion group).

Example 5.4. Let d1, d2 ∈ N≥2, n = d1d2 and G0 = {−n, d1}. Then G0 fulfils all assumptions of Lemma 5.3, and with ϕ as in
Lemma 5.3, we get that C(ϕ) = 〈d1 + nZ〉 ( Z/nZ. However,B(G0) is factorial, and thus its class group is trivial.

Proposition 5.5. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the
class group G = C(ϕ) is an infinite cyclic group that we identify with Z. Let GP ⊂ G denote the set of classes containing prime
divisors. Suppose that GP is finite or that min{|G+P |, |G

−

P |} = 1. Then there exists a transfer homomorphism θ : H → H0 into a
finitely generated monoid H0 such that c(H, θ) ≤ 2. Moreover, the following statements hold.

1. L(H) = L(H0), in particular, the Structure Theorem for Sets of Lengths holds for H with∆(H) = ∆(H0) and some bound M,
and ρ(H) = ρ(H0) is finite and accepted.

2. δ(H) = δ(H0) <∞.
3. cmon(H) ≤ max{cmon(H0), 2} <∞.

Proof. First we show the existence of the required transfer homomorphism. For this, we recall that a monoid of zero-sum
sequences over a finite set is finitely generated ([28, Theorem 3.4.2]). If GP is finite, then β : H → B(GP) has the desired
properties by Lemma 3.3. Now suppose that min{|G+P |, |G

−

P |} = 1, say G
−

P = {−n}, and set G0 = {b+ nZ | b ∈ G
+

P } ⊂ Z/nZ.
Using Lemmas 3.3 and 5.3, we have block homomorphisms β : H → B(GP) and β′ : B(GP) → B(G0). By Lemma 3.2, the
composition θ = β′ ◦ β : H → B(G0) still has the required properties.
Again, by Lemmas 3.2 and 3.3, it suffices to verify the additional statements for finitely generated monoids: we refer to

[28, Theorem 4.4.11] for the Structure Theorem, to [28, Theorem 3.1.4] for the elasticity and the successive distance, and to
[14, Theorem 5.1] for the monotone catenary degree. �

Lemma 5.6. Let H be an atomic monoid, a ∈ H and z, z ′ ∈ Z(a) and l =
∣∣|z| − |z ′|∣∣. Then there exists some z ′′ ∈ Z(a) such

that |z ′′| = |z ′| and d(z, z ′′) ≤ lδ(H).

Proof. See [28, Lemma 3.1.3]. �

Lemma 5.7. Let H be an atomic monoid with δ(H) <∞. Let M ∈ N, a ∈ H, u ∈ A(Hred) and z, ẑ, z ∈ Z(a) be such that

|z| ≤ |z|, u | z, u | ẑ and d(z, ẑ) ≤ M.

Then there is a z ′ ∈ Z(a) ∩ uZ(H) such that |z| ≤ |z ′| ≤ |z| and d(z, z ′) ≤ M +
(
M +max∆(H)

)
δ(H).

Proof. Let v ∈ H be such that vH× = u. We set b = v−1a, z = uy and ẑ = ûy, where y, ŷ ∈ Z(b). If |z| ≤ |̂z| ≤ |z|, then
z ′ = ẑ fulfills the requirements. If not, then either |̂z| < |z| or |z| < |̂z|, and we decide these two cases separately.
Case 1: |̂z| < |z|.
Since |̂y| = |̂z| − 1 ∈ L(b) and |y| = |z| − 1 ∈ L(b), there is a

k ∈ L(b) ∩ [|z| − 1, |z| − 1] with k ≤ |z| − 1+max∆(H).

Let y′′ ∈ Z(b)with |y′′| = k. Then

|y′′| − |̂y| = k− |̂z| + 1 ≤ |z| − 1+max∆(H)− |̂z| + 1
≤ d(z, ẑ)+max∆(H) ≤ M +max∆(H).

Thus, by Lemma 5.6, there is a y′ ∈ Z(b)with |y′| = |y′′| and d(̂y, y′) ≤
(
M+max∆(H)

)
δ(H). Then z ′ = uy′ ∈ Z(a)∩uZ(H)

with |z ′| = 1+ k ∈ [|z|, |z|] and

d(z, z ′) ≤ d(z, ẑ)+ d(ûy, uy′) ≤ M +
(
M +max∆(H)

)
δ(H).

Case 2: |z| < |̂z|.
By Lemma 5.6, there is a y′ ∈ Z(b)with |y′| = |y| and

d( ŷ, y′) ≤
(
|̂y| − |y|

)
δ(H) =

(
|̂z| − |z|

)
δ(H)

≤

(
|̂z| − |z|

)
δ(H) ≤ d(̂z, z)δ(H) ≤ Mδ(H).

Then z ′ = uy′ ∈ Z(a) ∩ uZ(H)with |z ′| = |z| and

d(z, z ′) ≤ d(z, ẑ)+ d(ûy, uy′) ≤ M +Mδ(H). �
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Proposition 5.8. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid with infinite
cyclic class group C(ϕ). If the successive distance δ(H) is finite, then the monotone catenary degree cmon(H) is finite.

Proof. We set G = C(ϕ), identify Gwith Z and denote by GP ⊂ G the set of classes containing prime divisors. Suppose that
δ(H) < ∞. By Lemma 3.3, β is a transfer homomorphism with c(H,β) ≤ 2. Thus Lemma 3.2 implies that δ(H) = δ(GP)
and cmon(H) ≤ max{cmon(GP), c(H,β)} ≤ max{cmon(GP), 2}. Thus it suffices to verify that cmon(GP) <∞. Note that∆(GP)
is finite (since δ(GP) <∞), and thus by Theorem 4.2 we get that (say) G−P is finite.

We setM =
(
|minGP | + |G−P |

2
)
|minGP |,M∗ = M +

(
M +max∆(H)

)
δ(H), and assert that

cmon(GP) ≤ M∗.

For this, we have to show that cmon(A) ≤ M∗ for all A ∈ B(GP), and we proceed by induction on max L(A).
If A ∈ B(GP)with max L(A) = 1, then A ∈ A(GP) and cmon(A) = 0. Now let A ∈ B(GP)with max L(A) > 1 and suppose

that cmon(B) ≤ M∗ for all B ∈ B(GP)with max L(B) < max L(A).
We pick z, z ∈ Z(A)with |z| ≤ |z| and must find a monotoneM∗-chain of factorizations from z to z.
By Lemma 4.5 there is a U | z with U ∈ A(GP) and a ẑ ∈ Z(A) ∩ UZ(GP) such that d(z, ẑ) ≤ M . By Lemma 5.7, there is a

z ′ ∈ Z(A) ∩ UZ(GP) such that |z| ≤ |z ′| ≤ |z| and d(z, z ′) ≤ M∗. Now we set

B = U−1A, z = Uy and z ′ = Uy′,

where y, y′ ∈ Z(B). Since max L(B) < max L(A), the induction hypothesis gives a monotoneM∗-chain y′ = y1, . . . , yk = y
of factorizations of B from y′ to y. Therefore

z, z ′ = Uy′ = Uy1,Uy2, . . . ,Uyk = Uy = z

is a monotoneM∗-chain of factorizations of A from z to z. �

Proof of Theorem 5.2. 3. The implication (b3)⇒ (b4) follows since, for a ∈ H and each two adjacent lengths k, l ∈ L(a),
we have, by definition, d

(
Zk(a), Zl(a)

)
≤ cmon(H). The implication (b2)⇒ (b3) is Proposition 5.8.

1. By Proposition 5.5, we know that (a) implies (b1), (b2), and (b3); and, by part 3, we know that (b3) implies (b4).
2. By definition, each of (b1), (b2) and (b3) implies the finiteness of ∆(H). Thus, Theorem 4.2 implies the assertion. It

remains to show that (b4) implies (c).
Suppose that (b4) holds with some M ∈ N and assume to the contrary that (c) does not hold, i.e., G+P and G

−

P are both
infinite. We proceed as in the proof of Theorem 4.2, part (b)⇒ (a).
We set a = maxG−P and b = minG

+

P and let α ∈ [1, b] and β ∈ [1, |a|] be such that Va,b = a
αbβ ∈ A(GP). We intend to

apply Lemma 4.7 with v = 3. Thus, let D = 3|a|(b+ |a|) gcd(a, b), let b1 ∈ G+P with

b1
lcm(a, b)

≥ 2D+M,

and let a2 ∈ G−P with |a2| ≥ (3b1+ b)|a|. Let α1, α2, β2, β2 ∈ N be such that Va,b1 = a
α1bβ11 and Va2,b = a

α2
2 b

β2 are elements
ofA(GP).
First, we assert that there exist z0, z1, z2, z3 ∈ Z((Va,b1Va2,b)

3)with, where t(·) is defined as in Lemma 4.7,

t(z0) < t(z1) < t(z2) < t(z3).

We note that Va,b | Va,b1Va2,b (by the same reasoning used in the proof of Theorem 4.2), and thus there exists some y ∈
Z(Va,b1Va2,b)with t(y) 6= 0. For i ∈ [0, 3], we set zi = y

i(Va,b1 · Va2,b)
3−i. Then we have t(zi) = it(y), establishing the claim.

Let z ′0, z
′

1, z
′

2, z
′

3 ∈ Z((Va,b1Va2,b)
3) be such that t(z ′0) < t(z ′1) < t(z ′2) < t(z ′3) and such that there exists no

z ∈ Z((Va,b1Va2,b)
3)with t(z ′1) < t(z) < t(z

′

2).
By Lemma 4.7, we get, for i ∈ [0, 2], that

|z ′i+1| − |z
′

i | ≥
b1

lcm(a, b)

(
t(z ′i+1)− t(z

′

i )
)
− 2D ≥ M.

Since min L((Va,b1Va2,b)
3) ≤ |z ′0| < |z

′

1| < |z
′

2| < |z
′

3| ≤ max L((Va,b1Va2,b)
3), we get that

|z ′1|, |z
′

2| ∈
[
min L

(
(Va,b1Va2,b)

3)
+M,max L

(
(Va,b1Va2,b)

3)
−M

]
.

Let

k = max
(
L
(
(Va,b1Va2,b)

3)
∩

[
b1

lcm(a, b)
t(z ′1)− D,

b1
lcm(a, b)

t(z ′1)+ D
])

and

l = min
(
L
(
(Va,b1Va2,b)

3)
∩

[
b1

lcm(a, b)
t(z ′2)− D,

b1
lcm(a, b)

t(z ′2)+ D
])
;
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note that, by Lemma 4.7, |z ′1| is an element from the set used above to define k while |z
′

2| is an element of the set used
above to define l; also note that these two intervals are disjoint. In particular, we have |z ′1| ≤ k < l ≤ |z

′

2|. Since there
exists no z ∈ Z((Va,b1Va2,b)

3) with t(z ′1) < t(z) < t(z
′

2), it follows by Lemma 4.7 that k and l are adjacent lengths. Since
k− l ≥ b1

lcm(a,b) − 2D ≥ M and by (2.1), we have d
(
Zk(a), Zl(a)

)
≥ M + 2, a contradiction to the assumption that (b4) holds

withM . �

6. The structure theorem for sets of lengths

The Structure Theorem for Sets of Lengths is a central finiteness result in factorization theory. Apart from Krull monoids
– which will be discussed below – the Structure Theorem holds, among others, for weakly Krull domains with finite v-class
group and for Mori domains Awith complete integral closure Â = R for which the conductor f = (A :R) 6= {0} and C(R) and
R/f are both finite (see [28, Section 4.7] for an overview, and [26,31] for recent progress). Moreover, it was recently shown
that the Structure Theorem is sharp for Krull monoids with finite class group [45].
Let H be a Krull monoid and GP ⊂ G as always. By Theorem 5.2, it suffices to consider the situation when G+P is finite

and 2 ≤ |G−P | < ∞. Essentially, all results so far which establish the Structure Theorem for some class of monoids use
the machinery of pattern ideals and tame generating sets (presented in detail in [28, Section 4.3]). First, we repeat these
concepts and outline their significance for the Structure Theorem. However, Proposition 6.3 shows that in our situation this
approach is not applicable in general. The main result of this section, Theorem 6.4, provides a full characterization of when
the Structure Theorem holds. Although the setting is special, it shows that, in Theorem 5.2, condition (b1) does not imply
condition (a) and provides, together with Proposition 6.3, the first example of any Krull monoid for which the Structure
Theorem holds without tame generation of pattern ideals. Furthermore, note by Lemma 3.4 that, for the sets GP considered
in Theorem 5.2, there actually exists a Krull monoid such that GP is the set of classes containing prime divisors with respect
to a divisor theory of H .
Likewise, all previous examples ofmonoidsH with finitemonotone catenary degree cmon(H) have been achieved by using

that δ(H) is finite. However, in Proposition 6.10, we give the first example of a monoid H with cmon(H) <∞ but δ(H) = ∞.

Definition 6.1. Let H be an atomic monoid, let a ⊂ H and let A ⊂ Z be a finite nonempty subset.
1. We say that a subset L ⊂ Z contains the pattern A if there exists some y ∈ Z such that y + A ⊂ L. We denote by
Φ(A) = ΦH(A) the set of all a ∈ H for which L(a) contains the pattern A.

2. Now a is called a pattern ideal if a = Φ(B) for some finite nonempty subset B ⊂ Z.
3. A subset E ⊂ H is called a tame generating set of a if E ⊂ a and there exists some N ∈ N with the following property:
for every a ∈ a, there exists some e ∈ E such that

e | a, sup L(e) ≤ N and t(a, Z(e)) ≤ N.

In this case, we call E a tame generating set with bound N , and we say that a is tamely generated.

The significance of tamely generated pattern ideals stems from the following result.

Proposition 6.2. Let H be a BF-monoid with finite nonempty set of distances∆(H) and suppose that all pattern ideals of H are
tamely generated. Then there exists a constant M ∈ N0 such that the following properties are satisfied:
(a) The Structure Theorem for Sets of Lengths holds with∆(H) and bound M.
(b) For all a ∈ H and for each two adjacent lengths k, l ∈ L(a)∩[min L(a)+M, max L(a)−M], we have d

(
Zk(a), Zl(a)

)
≤ M.

Proof. The first statement follows from [28, Theorem 4.3.11] and the second from [31, Proposition 5.4]. �

Proposition 6.3. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the
class group G = C(ϕ) is an infinite cyclic group that we identify with Z. Let GP ⊂ G denote the set of classes containing prime
divisors. Suppose that

• G+P is infinite and
• there are a1, a2 ∈ G−P and b ∈ G

+

P such that

a1
gcd(a2, b)
gcd(a1, a2, b)

≡ a2
gcd(a1, b)
gcd(a1, a2, b)

mod b but a1
gcd(a2, b)
gcd(a1, a2, b)

6= a2
gcd(a1, b)
gcd(a1, a2, b)

.

Then both H andB(GP) have a pattern ideal which is not tamely generated.

Proof. By [26, Proposition 3.14], it suffices to show thatB(GP) has a pattern ideal which is not tamely generated.
First we show that B({a1, a2, b}) is half-factorial. By Lemma 5.3, it suffices to show that B({a1 + bZ, a2 + bZ}) is half-

factorial. By [22, Proposition 5], this follows by (indeed, it is equivalent to) the assumed congruence on a1, a2, and b.
We set α1 = b/ gcd(a1, b), β1 = |a1|/ gcd(a1, b), α2 = b/ gcd(a2, b), β2 = |a2|/ gcd(a2, b) and observe that our

assumption a1
gcd(a2,b)
gcd(a1,a2,b)

6= a2
gcd(a1,b)
gcd(a1,a2,b)

implies d = a1α1 − a2α2 6= 0, say d > 0. Noting that α1a1 = lcm(a, b) and
α2a2 = lcm(a2, b), we can consider the two atoms

U1 = a
α1
1 b

β1 and U2 = a2α2bβ2 ∈ A(GP).
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Since G+P is infinite, it contains arbitrarily large elements. Let N ∈ G
+

P \ {b}. We define

γ = min{vN(U) | U ∈ A({a1, a2, b,N})with N |U}.

Since N |a1|aN1 ∈ B(GP), it follows that γ ∈ [1, |a1|]. Now we pick an atom UN ∈ A({a1, a2, b,N}) with γ = vN(UN) for
which vb(UN) is minimal, say

UN = Nγ bβa
M1
1 a2

M2 ∈ A(GP), where β, γ ,M1,M2 ∈ N0 depend on N.

IfM2 ≥ |a1|, then U ′N = UNa
|a2|
1 a2

a1 has sum zero, and by the minimality of vN(UN) and vb(UN), it is an atom (as each atom
must have at least one positive element). Thus, we may additionally choose UN such that M2 < |a1|, which implies (recall
a2 < 0)

M1 =
1
|a1|

(
γN + βb+ a2M2

)
≥
1
|a1|

(
γN + a2|a1|

)
≥
N
|a1|
+ a2. (6.1)

In view of this inequality, we may suppose that N is sufficiently large to guarantee thatM1 ≥ |a2|α1α2. Note that, since UN
is an atom andM1 ≥ |a2|α1α2 ≥ α1, we have β < β1. We consider the element

AN = UNU2M1 ∈ B(GP).

Let k ∈
[
0,
⌊ M1
|a2|α1α2

⌋]
. Then we have

UN,k = Nγ bβa
M1+(a2α1α2)k
1 a2M2+(|a1|α1α2)k ∈ B(GP),

and by the minimality of γ and β , it follows that UN,k ∈ A(GP). Clearly, we get

zN,k = UN,kU
−a2α2k
1 U2M1+a1α1k ∈ Z(AN).

This shows that

L(AN) ⊃
{
M1 + 1+ dk

∣∣∣ k ∈ [0,⌊ M1
|a2|α1α2

⌋]}
. (6.2)

Thus, we have AN ∈ Φ({0, d}) for each sufficiently large N ∈ G+P .

Let EN ∈ Φ({0, d}) with EN | AN . Since {a1, a2, b}, is half-factorial, it follows that N | EN . By the definition of γ , there is a
U ′N ∈ A(GP)with Nγ |U ′N | EN . Note that [28, Lemma 1.6.5.6] shows that t(AN ,U

′

N) ≤ t(AN , Z(EN)).
Let AN = U ′NWN with WN ∈ B(GP). Then supp(WN) = {a1, a2, b} and hence |L(WN)| = 1. Thus all factorizations in

Z(AN) ∩ U ′NZ(GP) have the same length. We pick some factorization zN ∈ Z(AN) ∩ U ′NZ(GP). Clearly, there is a factorization
z∗N ∈ Z(AN) such that (in view of (6.2))∣∣|zN | − |z∗N |∣∣ ≥ max L(AN)−min L(AN)2

≥
d
2

⌊
M1

|a2|α1α2

⌋
.

This implies that

t(AN , Z(EN)) ≥ t(AN ,U ′N) ≥ min{d(z
∗

N , yN) | yN ∈ Z(AN) ∩ U ′NZ(GP)}

≥ min
{∣∣|z∗N | − |yN |∣∣ | yN ∈ Z(AN) ∩ U ′NZ(GP)

}
≥
∣∣|zN | − |z∗N |∣∣ ≥ d

2

⌊
M1

|a2|α1α2

⌋
.

Since N can be arbitrarily large and by (6.1), we get thatΦ({0, d}) is not tamely generated. �

We will frequently make use of the following simple observation. Let G be an abelian group and G1 ⊂ G0 ⊂ G subsets.
Then B(G1) ⊂ B(G0) is a divisor-closed submonoid (this means if A ∈ B(G1) and B ∈ B(G0) with B | A, then B ∈ B(G1)),
and hence L(G1) ⊂ L(G0). Therefore, if the Structure Theorem holds for B(G0), then it holds for B(G1). In particular,
if condition (b) holds, then the Structure Theorem holds for all B(G0) with G0 ⊂ GP , and if (b) fails, then the Structure
Theorem fails for allB(G0)with GP ⊂ G0—where GP is as in Theorem 6.4.

Theorem 6.4. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the class
group G = C(ϕ) is an infinite cyclic group that we identify with Z. Let GP ⊂ G denote the set of classes containing prime divisors.
Suppose that 1 ∈ G+P and G

−

P = {−d,−1} for some d ∈ N. Then the following statements are equivalent:

(a) The Structure Theorem for Sets of Lengths holds for H.
(b) G+P \ dZ is finite or a subset of 1+ dZ.

The remainder of this section is devoted to the proof of Theorem 6.4.

Lemma 6.5. Let H be an atomic monoid. Suppose that there exists some e ∈ N such that, for each N ∈ N, there exists some a ∈ H
such that L(a) ∩ [min L(a),min L(a) + N] ⊂ min L(a) + eZ, yet L(a) 6⊂ min L(a) + eZ. Then the Structure Theorem does not
hold for H.
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Proof. We assume to the contrary that there exists some finite nonempty set∆∗ ⊂ N and someM ∈ N such that, for each
b ∈ H , the set L(b) is an AAMP with difference d ∈ ∆∗ and boundM .
LetD = 2 lcm(∆∗). LetN ≥ 2M+D and let a ∈ H with the properties from the statement of the lemma. Let l1 = min L(a)

and l2 = max L(a). Note that l2 ≥ l1 + N (by the property assumed for a). By assumption, we get that L(a) is an AAMP, i.e.,

L(a) = y+ (L′ ∪ L∗ ∪ L′′) ⊂ y+D + dZ

where d ∈ ∆∗, {0, d} ⊂ D ⊂ [0, d], L∗ is finite nonempty withmin L∗ = 0 and L∗ = (D+dZ)∩[0,max L∗], L′ ⊂ [−M,−1]
and L′′ ⊂ max L∗ + [1,M], and y ∈ N.
Since

l2 ≥ l1 + N ≥ l1 + 2M + D ≥ l1 −min L′ +M + D,

it follows that [l1 −min L′, l1 −min L′ + D− 1] ∩ L(a) ⊂ L∗, and thus

[l1 −min L′, l1 −min L′ + D− 1] ∩ L(a) = [l1 −min L′, l1 −min L′ + D− 1] ∩ (y+D + dZ).

On the other hand, by the property assumed for a, and since N ≥ 2M + D ≥ −min L′ + D, we have

[l1 −min L′, l1 −min L′ + D− 1] ∩ L(a) ⊂ l1 + eZ.

Thus

A = [−min L′,−min L′ + D− 1] ∩ (y− l1 +D + dZ) ⊂ eZ.

Since D ≥ 2d, it follows that for each d′ ∈ D there exists some k ∈ Z and ε ∈ {−1, 1} such that y− l1+d′+kd, y− l1+d′+
(k+ ε)d ∈ A. Thus e | d and, furthermore, e | y− l1 + d′. Consequently, y+D + dZ ⊂ l1 + eZ. This yields a contradiction,
since L(a) ⊂ y+D + dZ, yet L(a) 6⊂ l1 + eZ by hypothesis. �

Lemma 6.6. Let d ∈ N, e ∈ [2, d− 1]with gcd(e, d) > 1 and G0 ⊂ Z. If {−d,−1, 1} ⊂ G0 and G+0 ∩ (e+ dZ) is infinite, then
the Structure Theorem does not hold forB(G0).

Proof. We may assume d ≥ 4, since otherwise there exists no e ∈ [2, d − 1] with gcd(e, d) > 1. Let k ∈ N such that
e+ dk ∈ G0; by assumption, we know that arbitrarily large kwith this property exist, and we thus may impose that k ≥ 10.
Let f ∈ N be minimal such that ef ∈ dN, say ef = du. Since gcd(e, d) > 1, we see that f ∈ [2, d/2] and u ≤ e/2 ≤ d/2. We
consider the sequence

B = (e+ dk)f (−d)u+fk(−1)d(u+fk)1d(u+fk).

Since ef = du, we have B ∈ B(G0). First, we consider two specific factorizations of B. Then, we investigate the length of all
factorizations of B of small length. Let

z1 = ((e+ dk)f (−d)u+fk) · ((−1)1)d(u+fk)

and

z2 = ((e+ dk)(−1)e+dk)f · ((−d)1d)u+fk.

We note that z1, z2 ∈ Z(B) and that |z1| = 1+ d(u+ fk) and |z2| = f + (u+ fk). Since f − 1 /∈ (d− 1)Z (as f ∈ [2, d/2]),
we have |z1| − |z2| /∈ (d− 1)Z.
We claim that there exists an absolute positive constant c such that, for each z ∈ Z(B)with

|z| ≤ |z2| + c(d− 1)k,

we have

|z| − |z2| ∈ (d− 1)N0.

By Lemma 6.5 and since k can be arbitrarily large, this implies that the Structure Theorem does not hold. Thus, it suffices to
establish this claim. For definiteness, we set c = 1/6 (it is apparent from the subsequent argument that it only has to be
less than 1/2). Let

z = A1 · . . . · AsU1 · . . . · Ut ∈ Z(B)

with Ai,Uj ∈ A(G0), and (e + dk) | Ai and (e + dk) - Uj for all i, j. We proceed to show that ve+dk(Ai) = 1 for each i, i.e.,
s = f . Clearly, v(−1)1(z) ≤ |z|, and thus we have

v−1(π(A1 · . . . · As)) ≥ d(u+ fk)− |z|
≥ d(u+ fk)− (f + u+ fk+ c(d− 1)k)
= (f − 2)(e+ dk)+ 2(e+ dk)− (f + u+ fk+ c(d− 1)k)
≥ (f − 2)(e+ dk)+ dk− (d/2+ d+ dk/2+ cdk)
> (f − 2)(e+ dk)+ d(k− 3/2− k/2− ck).
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Since c = 1/6 and k ≥ 10, we have k(1/2− c)− 3/2 ≥ 1. So we have

v−1(π(A1 · . . . · As)) ≥ (f − 2)(e+ dk)+ d. (6.3)

If s ≤ f − 1, then, since v−1(Ai) ≤ e + dk for each i, we conclude from (6.3) that v−1(Ai) ≥ d for each i, implying (since
supp(A−i ) ⊂ {−1,−d}) that ve+dk(Ai) = 1 for each i, contradicting s ≤ f − 1. Thus s = f . We have Uj ∈ {(−1)1, ((−d)1

d)}
for each j. Thus

z = A1 · . . . · Af ((−1)1)a((−d)1d)b

where a = d(u+ fk)− v−1(π(A1 · . . . · Af )) and b = u+ fk− v−d(π(A1 · . . . · Af )). We have

|z| = f + (u+ fk)(d+ 1)− (v−1(π(A1 · . . . · Af ))+ v−d(π(A1 · . . . · Af )))

and, since

d · v−d(π(A1 · . . . · Af ))+ v−1(π(A1 · . . . · Af )) = (u+ fk)d,

this implies

|z| = f + u+ fk+ (d− 1)v−d(π(A1 · . . . · Af )),

establishing |z| − |z2| ∈ (d− 1)N0. �

Lemma 6.7. Let d ∈ N, e ∈ [1, d − 1] with gcd(e, d) = 1 and G0 ⊂ Z. If {−d,−1, 1} ⊂ G0, G+0 ∩ (e + dZ) is infinite and
G+0 \ ((e+ dZ) ∪ dZ) is nonempty, then the Structure Theorem does not hold forB(G0).

Proof. We may assume d ≥ 3, as the hypotheses are null otherwise. Since G+0 \ ((e + dZ) ∪ dZ) is nonempty, let
f ∈ [1, d − 1] \ {e} and ` ∈ N0 be such that f + d` ∈ G+0 . Since {−d,−1, 1} ⊂ G0, G

+

0 ∩ (e + dZ) is infinite, let k ∈ N be
such that e+ dk ∈ G+0 and e+ dk ≥ f + d`. Since gcd(e, d) = 1, let x ∈ [1, d− 1] be the integer such that f + xe ∈ dZ, say
f + xe = ud. Since f ∈ [1, d− 1] \ {e}, we have x 6= d− 1 and u ≤ d− 1.
We proceed similarly to Lemma 6.7. We consider the following element ofB(G0):

B = (f + d`)(e+ dk)x(−d)u+xk+`(−1)d(u+xk+`)1d(u+xk+`).

Again, we first consider two specific factorizations of B, namely

z1 = ((f + d`)(e+ dk)x(−d)u+xk+`) · ((−1)1)d(u+xk+`)

and

z2 = ((f + d`)(−1)f+d`) · ((e+ dk)(−1)e+dk)x · ((−d)1d)u+xk+`.

The respective lengths of these factorizations are 1+ d(u+ xk+ `) and 1+ x+ (u+ xk+ `). Thus, |z1| − |z2| /∈ (d− 1)Z.
As in Lemma 6.6, we show that there exists a positive c , now depending on d (but not on k), such that, for each z ∈ Z(B)

with

|z| ≤ |z2| + c(d− 1)k,

we have

|z| − |z2| ∈ (d− 1)N0,

which again completes the proof by Lemma 6.5. We set c = 1/(d− 1) (this choice is not optimal). Let

z = A1 · . . . · As((−1)1)a((−d)1d)b

where Ai /∈ {(−1)1, (−d)1d}. We proceed to show that |A+i | = 1 for each i. From the definition of B, we have s ≤ x + 1.
Again, v(−1)1(z) ≤ |z|, and thus

v−1(π(A1 · . . . · As)) ≥ d(u+ xk+ `)− |z|
≥ d(u+ xk+ `)− (1+ x+ (u+ xk+ `)+ c(d− 1)k)
= (x− 1)(e+ dk)+ (f + d`)+ (e+ dk)− (1+ x+ (u+ xk+ `)+ c(d− 1)k)
≥ (x− 1)(e+ dk)+ (f + d`)+ (e+ dk)− (d− 1+ (d− 1+ (d− 2)k+ `)+ c(d− 1)k)
≥ (x− 1)(e+ dk)+ d+ 2k− 3d− c(d− 1)k.

Since c = 1/(d− 1), we have, for k ≥ 3d,

v−1(π(A1 · . . . · As)) ≥ (x− 1)(e+ dk)+ d.

If s = x+ 1, the claim is obvious. Thus, assume s ≤ x. Since v−1(Ai) ≤ e+ dk for each i (recall that e+ dk ≥ f + d`), we get
that v−1(Ai) ≥ d for each i, establishing the claim (since supp(A−i ) ⊂ {−1,−d}).
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Thus

z = A1 · . . . · As((−1)1)a((−d)1d)b,

where a = d(u+ xk+ `)− v−1(π(A1 · . . . · As)) and b = (u+ xk+ `)− v−d(π(A1 · . . . · As)). We have

|z| = s+ (d+ 1)(u+ xk+ `)− (v−1(π(A1 · . . . · As))+ v−d(π(A1 · . . . · As))).

We note that if f + `d 6= 1, then s = 1+ x, and if f + `d = 1, then s = x. Moreover, if the former holds true, then

d · v−d(π(A1 · . . . · Af ))+ v−1(π(A1 · . . . · Af )) = d(u+ xk+ `),

whereas if the latter holds true, then

d · v−d(π(A1 · . . . · Af ))+ v−1(π(A1 · . . . · Af )) = d(u+ xk+ `)− 1.

In both cases, this implies

|z| = 1+ x+ (u+ xk+ `)+ (d− 1)v−d(π(A1 · . . . · As))

establishing |z| − |z2| ∈ (d− 1)N0, as claimed. �

Proposition 6.8. Let {−1, 1} ⊂ G0 ⊂ Z with G−0 finite such that the Structure Theorem holds forB(G0). For each−d ∈ G
−

0 , at
least one of the following statements holds:
(a) |G+0 \ dZ| <∞.
(b) G+0 \ dZ ⊂ 1+ dZ.

Proof. The claim is trivial for d ≤ 2. Suppose d ≥ 3. Let E ⊂ [0, d − 1] be such that G+0 ∩ (e + dZ) is infinite for each
e ∈ E. If there exists some e ∈ E \ {0} with gcd(e, d) > 1, Lemma 6.6 yields a contradiction. Thus, gcd(e, d) = 1 for each
e ∈ E \ {0}. By Lemma 6.7 we get that if gcd(e, d) = 1, then e = 1 (note that 1 ∈ G+0 ), and moreover, in this case we have
G+0 ⊂ ((1+ dZ) ∪ dZ). �

Now, we show that the Structure Theorem indeed holds for monoids of zero-sum sequences over sets of the form
considered in Theorem 6.4 not covered by Lemma 6.5 – Proposition 6.8. Moreover, we investigate the finiteness of the
successive distance for these sets. Again, note that the set F0 ∪ dN in the result below does not fulfil condition (a) of
Theorem 5.2, yet by Lemma 3.4 it can occur as the subset of classes containing prime divisors of a Krull monoid, even with
respect to a divisor theory, showing that the conditions (b1), (b2), and (b3) do not imply (a), not even combined.

Proposition 6.9. Let d ∈ N≥2 and F0 ⊂ Z with F−0 = {−d,−1}.
1. The Structure Theorem holds forB(F0 ∪ dN) if and only if it holds forB(F0 ∪ {d}). More precisely, for each L ∈ L(F0 ∪ dN),
there exists some y ∈ N0 such that y+ L ∈ L(F0 ∪ {d}).

2. δ(F0 ∪ dN) = δ(F0 ∪ {d}).
3. There is a map ψ : B(F0 ∪ dN) → B(F0 ∪ {d}) such that, for each B ∈ B(F0 ∪ dN) and adjacent lengths k and l of L(B),
we have d(Zk(B), Zl(B)) ≤ d(Zk′(ψ(B)), Zl′(ψ(B))) with k′, l′ adjacent lengths of L(ψ(B)). More precisely, we can choose
k′ = k+ y and l′ = l+ y with y such that y+ L(B) = L(ψ(B)).

In particular, if F0 is finite, then the Structure Theorem holds forB(F0 ∪ dN), and both δ(F0 ∪ dN) and cmon(F0 ∪ dN) are finite.

Proof. Let G0 = F0 ∪ dN and G1 = F0 ∪ {d}.
1. Since G1 ⊂ G0, one implication is clear and it remains to show that if the Structure Theorem holds for B(G1), then

it holds forB(G0). Indeed, the more precise assertion we establish shows that the Structure Theorem holds with the same
bound and the same set of differences.
Let ψ : F (G0) → F (G1) denote the monoid homomorphism defined via ψ(g) = g for g /∈ dN and ψ(kd) = dk for

kd ∈ dN. We note that σ(S) = σ(ψ(S)) for each S ∈ F (G0); thus ψ yields a homomorphism, and indeed an epimorphism,
fromB(G0) toB(G1).
Moreover, we observe that if A ∈ A(G0) with kd | A, for some k ∈ N, then A+ = kd. This implies that, for such an

atom, ψ(A) = dk(−1)d`(−d)k−` and (d(−1)d)` · (d(−d))k−` ∈ Z(ψ(A)) is the unique factorization of ψ(A). We denote
this factorization by ψ(A) and we note that |ψ(A)| = σ(A+)/d. Setting ψ(A) = A for each atom not of this form, i.e.,
A ∈ A(G0) with supp(A) ∩ dN = ∅, and extending this map to Z(G0), we get a homomorphism, indeed an epimorphism,
ψ : Z(G0)→ Z(G1).
Since π(ψ(z)) = ψ(π(z)), we see that ψ(Z(B)) ⊂ Z(ψ(B)) for each B ∈ B(G0). Moreover, for B ∈ B(G0) and z ∈ Z(B),

we have, denoting F =
∏
g∈dN g

vg (B), that |ψ(z)| = |z| + (σ (F)/d− |F |). In particular, the value of |ψ(z)| − |z| is the same
for each z ∈ Z(B).
Thus, to establish our claim on sets of lengths, it suffices to show that ψ(Z(B)) = Z(ψ(B)) for each B ∈ B(G0). Let

B ∈ B(G0) and again let F =
∏
g∈dN g

vg (B) =
∏|F |
i=1(kid), where ki ∈ N. Let z

′
∈ Z(ψ(B)). There exists a unique decomposition

z ′ = z ′1z
′

2 such that z
′

1 is minimal with d
σ(F)/d

| π(z ′1) (note that vd(ψ(B)) = σ(F)/d). We have |z ′1| = σ(F)/d. Write
z ′1 =

∏|F |
i=1 y

′

i such that each factor y
′

i ∈ Z(ψ(B)) contains exactly |y′i| = ki atoms. Then letting Ai = (kid)d
−kiπ(y′i), we have

Ai ∈ A(G0), and so z = A1 · . . . · A|F |z ′2 is a factorization of B with ψ(z) = ψ(A1) · . . . · ψ(A|F |)z ′2 = y
′

1 · . . . · y
′
sz
′

2 = z
′,

establishing our claim.
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2. Since δ(G1) ≤ δ(G0) is obvious, we only have to show that δ(G0) ≤ δ(G1). We show the following slightly stronger
result. Let B ∈ B(G0) and z ∈ Z(B). Then δ(z) ≤ δ(ψ(z)).
Let F and z = z1z2 be defined as above, and let z1 =

∏|F |
i=1 Ai and let A

+

i = kid, where ki ∈ N. Moreover, let z
′
= ψ(z)

and let z ′ = z ′1z
′

2 with z
′

1 = ψ(z1) and z
′

2 = ψ(z2) = z2. Additionally, let y
′

i = ψ(Ai) for each i. Let j ∈ Z be such that |z| and
|z| + j are adjacent lengths of L(B). By the already established result for sets of lengths, it follows that |ψ(z)| and |ψ(z)| + j
are adjacent lengths of L(ψ(B)). Thus, by definition, there exists some factorization x′ ∈ Z(ψ(B))with |x′| = |ψ(z)| + j and
d(x′, ψ(z)) ≤ δ(ψ(z)). Let x′ = x′1x

′

2 with x
′

1 minimal such that d
σ(F)/d

| π(x′1). We note that

d(z ′, x′) = d(z ′1, x
′

1)+ d(z ′2, x
′

2). (6.4)

Thus, by re-indexing appropriately, we find a

t ≤ d(z ′1, x
′

1) (6.5)

such that
∏|F |
i=t+1 y

′

i | x
′

1.

Let x′′1 = x
′

1

(∏|F |
i=t+1 y

′

i

)−1
. As we argued at the end of part 1, there exists, for i ≤ t , factorizations y′′i ∈ Z(ψ(B)), each

containing exactly |y′i| = ki atoms, such that
∏t
i=1 y

′′

i = x
′′

1 . For i ≤ t , let A
′

i = d
−ki(kid)π(y′′i ), and for i ∈ [t + 1, |F |],

let A′i = Ai. Then, with x1 =
∏|F |
i=1 A

′

i and x2 = x
′

2, we have that x = x1x2 is a factorization of B, and since ψ(x) =
x′′1(
∏|F |
i=t+1 y

′

i)x
′

2 = x
′

1x
′

2, we get that |x| − |z| = |ψ(x)| − |ψ(z)| = |x
′
| − |ψ(z)| = j. Finally, using (6.4) and (6.5), we

have

d(z, x) ≤ d(z1, x1)+ d(z2, x2) ≤ t + d(z2, x2) ≤ d(z ′1, x
′

1)+ d(z ′2, x
′

2) = d(z ′, x′),

establishing the claim.
3. We assert that the already defined map ψ has the claimed properties. Let B ∈ B(G0) and let k, l ∈ L(B) be

adjacent lengths. By the proof of 1, we know that there exists some y such that y + L(B) = L(ψ(B)). Let k′ = k + y
and l′ = l + y; in particular, k′ and l′ are adjacent lengths of L(ψ(B)). Let z ′ ∈ Zk′(ψ(B)) and x′ ∈ Zl′(ψ(B)) with
d(z ′, x′) ≤ d(Zk′(ψ(B)), Zl′(ψ(B))). Similarly to the argument in 2, we can construct z ∈ Zk(B) and x ∈ Zl(B) with
d(z, x) ≤ d(z ′, x′).
We now address the additional statements. Suppose that F0 is finite. By Proposition 5.5, we know that the Structure

Theorem holds forB(F0 ∪ {d}) and that δ(F0 ∪ {d}) is finite. Thus, by parts 1 and 2, we get that the Structure Theorem holds
forB(F0 ∪ dN) and that δ(F0 ∪ dN) is finite. Since δ(F0 ∪ dN) is finite, Proposition 5.8 implies that cmon(F0 ∪ dN) is finite. �

The systems of sets of lengths ofB(F0∪dN) andB(F0∪{d}) are very closely related, but they are different in general. For
finite F0, the elasticity of B(F0 ∪ {d}) is accepted (Proposition 5.5), yet we will see in Corollary 6.11 that this is, in general,
not the case forB(F0 ∪ dN).

Proposition 6.10. Let d ∈ N≥2 and G0 = {−d,−1} ∪ (1+ dN0) ∪ dN0.
1. The Structure Theorem holds forB(G0). More precisely, each L ∈ L(G0) is an arithmetical progression with difference d− 1.
2. For each B ∈ B(G0) and adjacent lengths k and l of L(B), we have d(Zk(B), Zl(B)) = d+ 1.
3. δ(G0) = ∞.
4. cmon(G0) = d+ 1.

Proof. Beforewe start the argument for the individual parts, we start with some general remarks.We begin by investigating
A(G0). Let A ∈ A(G0). If kd | A for some k ∈ N0, then A = (kd)(−1)dl(−d)k−l for some l ∈ [0, k]. In particular, we have
two atoms containing d, namely U1 = d(−1)d and Ud = d(−d). Suppose supp(A) ∩ dN0 = ∅. Then A+ =

∏|A+|
i=1 (1 + kid)

with ki ∈ N0. It follows that |A+| ∈ {1, d}. Moreover, if |A+| = d, then −1 - A and therefore A = A+(−d)σ(A
+)/d. Thus,

either |A+| = 1 or else |A+| = d and A = A+(−d)σ(A
+)/d. Conversely, each zero-sum sequence B ∈ B(G0 \ {0}) with

B+ =
∏d
i=1(1+ kid), ki ∈ N0 and−1 /∈ supp(B

−) is an atom.
Let B ∈ B(G0 \ {0}) and let z ∈ Z(B). In view of the considerations just made, there exists a unique decomposition

z = z1zd such that, whenever A | z1, we have |A+| = 1 and, whenever A | zd, we have |A+| = d. We denote |zd| by td(z).
Since |B+| = |z1| + d|zd|, it follows that

|z| = |z1| + |zd| = |B+| − (d− 1)|zd| = |B+| − (d− 1)td(z), (6.6)

i.e., |z| is determined by B+ and td(z).
By Proposition 6.9, and since 0 is a prime, it suffices to consider the set G1 = {−d,−1} ∪ (1+ dN0) ∪ {d} for the proofs

of parts 1 and 3.

1. Let B ∈ B(G1). Let z ∈ Z(B) and let z = z1zd be defined as above. Since v−1(A) ≥ 1 for each A that neither fulfils
|A+| = d nor equals Ud, it follows that

td(z) ≥

(
|B+| − vd(B)

)
− v−1(B)

d
. (6.7)
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By (6.6), we get that L(B) is contained in an arithmetical progression with difference (d − 1). In view of this, it suffices to
establish the following claim.
Claim 1: If |z| < max L(B), then there exists some z ′ ∈ Z(B) with |z ′| = |z| + (d − 1) and d(z, z ′) = d + 1; in particular,
td(z ′) = td(z)− 1. Moreover, d(z, z ′) ≤ d+ 1.
To prove this, we first investigate the case |z| = max L(B).

Claim 2: If td(z) = 0 or v−1(A) ≤ 1 for each A | z, then |z| = max L(B).
Proof of Claim 2. If td(z) = 0, the claim is clear by (6.6). Thus, assume v−1(A) ≤ 1 for each A | z. In view of the characterization
of atoms, it follows that z1 = z ′1U

vd(B)
d and v−1(A) = 1 for each atom A | z ′1. In particular, we have |z1| = v−1(B)+ vd(B). In

view of d · td(z) = |B+| − |z1|, this implies

td(z) =

(
|B+| − vd(B)

)
− v−1(B)

d
.

Thus equality holds in (6.7), which by (6.6) implies that |z| is maximal.
Proof of Claim 1. Suppose |z| < max L(B). By Claim 2, we know that td(z) > 0 and that there exists some atom C | z such
that v−1(C) > 1. In view of the characterization of atoms given above, we have v−1(C) ≥ d and |C+| = 1. Since td(z) > 0,
there exists some atom Ad | z with |A+d | = d. Let z = AdCz0. We consider the zero-sum sequences B1 = (−d)

−1Ad(−1)d and
B2 = (−1)−dC(−d). Clearly, π(B1B2z0) = B. We note that B2 is an atom as |B+2 | = 1. Yet, since |B

+

1 | = d but v−1(B1) ≥ 1,
we get that B1 is not an atom; more precisely, max L(B1) = d. Thus, replacing the two atoms Ad and C in z by the atom B2
and any factorization of length d of B1 completes the claim.
2. By Proposition 6.9.3 and since 0 is a prime, it suffices to consider G1 for finding an upper bound on d(Zk(B), Zl(B)).

Thus, by Claim 2, we get that d(Zk(B), Zl(B)) ≤ d + 1. The reverse inequality follows by (2.1) in view of Proposition 6.9.3
and part 1.
3. We consider B = (1 + kd)dd1+kd(−d)1+kd(−1)d(1+kd). We note that L(B) = {2 + kd, 1 + d + kd} and z =

(
(1 +

kd)d(−d)1+kd
)
·(d(−1)d)1+kd is its only factorization of length 2+kd. The factorization z ′ =

(
(1+kd)(−1)1+kd

)d
·
(
d(−d)

)1+kd
has length 1 + d + kd and d(z ′, z) = |z ′| = 1 + d + kd, implying that δ(B) ≥ 1 + d + kd, and the claim follows by letting
k→∞.
4. By part 2 and since 0 is prime, it is sufficient to show that, for any two factorizations z, y ∈ Z(G0\{0})withπ(z) = π(y),

we have that: if |z| = |y|, then z and y can be concatenated by a monotone 2-chain. Clearly, in this case monotone means
that each factorization in this chain has length |z|, i.e., we claim that z and y can be concatenated by a 2-chain in Z|z|(π(z)).
We proceed by induction on |z|. Let z, y ∈ Z(G0) with π(z) = π(y) and suppose that |z| = |y|. If |z| = 1, the statement is
trivial. Thus, assume |z| ≥ 2 and that the statement is true for factorizations of length atmost |z|−1.Wemake the following
claim.
Claim 3: There exist z ′, y′ ∈ Z(π(z)) with |z ′| = |y′| = |z| such that z and z ′, as well as y and y′, can be concatenated by a
2-chain in Z|z|(π(z)) and gcd{z ′, y′} 6= 1.
We assume this claim is true and complete the argument. Let z ′ and y′ be factorizations with the claimed properties and

let U ∈ A(G0) with U | gcd{z ′, y′}. We set z ′′ = U−1z ′ and y′′ = U−1y′. By induction hypothesis, there exists a 2-chain
z ′′ = z ′′0 , z

′′

1 , . . . , z
′′
s = y

′′ in Z|z′′|(π(U−1z ′)). We note that U · z ′′i ∈ Z|z|(π(z)) for each i ∈ [0, s]. Thus, z ′ and y′ can be
concatenated by a 2-chain in Z|z|(π(z)). Combining these three chains, the result follows.
Proof of Claim 3. If 0 | z, then 0 | y and the claim is trivial. Thus, assume 0 - z.
Let z = z1zd and y = y1yd be as defined at the beginning of the proof and recall that |z| = |y| is equivalent to td(z) = td(y).
Before starting the actual argument, we make three subclaims.

Claim 3.1: Let h | π(z1) and g | π(zd) with g, h ∈ 1+ dN0 and h ≤ g . Then there exists a factorization x of π(z) such that,
with x = x1xd as above, π(x1)+ = π(z1)+gh−1 and π(xd)+ = π(zd)+hg−1 and d(z, x) ≤ 2; in particular, |x| = |z|.
To see this, let Ah | z1 and Ag | zd with h | Ah and g | Ag . We set A′h = hAgg

−1(−d)−(g−h)/d and A′g = gAhh
−1(−d)(g−h)/d.

Note that this process is well-defined and that A′g and A
′

h are atoms by the above characterization of atoms. Let x =
zA′gA

′

hA
−1
g A
−1
h . Noting that x1 = A

′
gA
−1
h z1 and xd = A

′

hA
−1
g zd, the claim is established.

Claim 3.2: Suppose that td(z) = 0. Then z and y can be concatenated by a 2-chain in Z|z|(π(z)).
Informally, each atom in z and y contains exactly one positive element, hence distinct atoms containing the same positive

element can only differ in the negative part. Successively exchanging (−1)d for−d and vice versa, for suitable pairs of atoms,
we can construct such a chain.
To give a formal argument, we use the independentmaterial of Section 7which follows. Note that, in this case, |z| = |y| =

|π(z)+| and A(E(G−P )) = {(−d,−d), (−1,−1), ((−1)
d,−d), (−d, (−1)d)}. Thus G′ ∼= Z with G′0 = {0, 1,−1}, where G

′

and G′0 are as defined before Theorem 7.3, whence D(S(G
−

P ), E(G
−

P )) = 2 by (7.14). Hence Theorem 7.3 shows that there is
a 2-chain concatenating z and y.
Claim 3.3: Suppose that td(z) = |z|. Then z and y can be concatenated by a 2-chain in Z|z|(π(z)).
Informally, since in this case supp(π(z)) = {−d}, we can apply an argument similar to the one in Claim 3.1, without

additional condition on the relative size of g and h.
To get a formal argument, note that in this case π(z) ∈ B(G0 \ {−1}). By Lemma 5.3, we get that the block monoid

associated to B(G0 \ {−1}) is B({0 + dZ, 1 + dZ}) ⊂ B(Z/dZ). However, B({0 + dZ, 1 + dZ}) is factorial, and thus its
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catenary degree is 0; also note that the former monoid is thus half-factorial. Since the catenary degree in the fibers of the
block homomorphism is 2 (see Lemma 3.3), the claim follows.
Now, we give the actual proof of Claim 3. In view of Claim 3.2, we may assume that td(z) > 0. Hence, let S | π(z) be a

subsequence with supp(S) ⊂ 1+ dN0 and |S| = d. Moreover, assume that σ(S) is minimal among all such subsequences of
π(z). We assert that there exists some x′ ∈ Z|z|(π(z)) such that S | π(x′d) and z and x

′ can be concatenated by a 2-chain in
Z|z|(π(z)). Let x′ ∈ Z|z|(π(z)) be a factorization such that z and x′ can be concatenated by a 2-chain in Z|z|(π(z)) and such
that S ′ = gcd{π(x′d), S} is maximal. We show that S

′
= S. Assume to the contrary that S ′ 6= S. Let h | π(x′1)with hS

′
| S. We

observe that there exists some g | S ′−1π(x′d)with g ∈ 1+ dN0 and g ≥ h; otherwise, the sequence gh
−1S would contradict

the minimality of σ(S).
We apply Claim 3.1 to x′ (with these elements g and h) and denote the resulting factorization by x′′. Since it can be

concatenated to z by a 2-chain in Z|z|(π(z)) and yet hS ′ | gcd{π(x′′d), S}, its existence contradicts the maximality of S
′ for x′.

Thus S ′ = S.
Since S | π(x′d), we have that U = S(−d)

σ(S)/d
| π(x′d). Let z

′

d ∈ Z(π(x′d)) with U | z
′

d. Since td(π(x
′

d)) = |x
′

d|, Claim 3.3
applied to x′d yields that x

′

d and z
′

d can be concatenated by a 2-chain in Z|x′d|(π(x
′

d)). We set z
′
= z ′dx

′

1 and observe that x
′ and

z ′, and thus z and z ′, can be concatenated by a 2-chain in Z|z|(π(z)) and U | z ′
In the same way, noting that S depends only on π(z) and not on z, we get a factorization y′ ∈ Z|z|(π(z))with U | y′ such

that y and y′ can be concatenated by a 2-chain in Z|z|(π(z)). Since U | gcd{z ′, y′}, the claim is established. �

Proof of Theorem 6.4. By Lemma 3.3, it suffices to considerB(GP). The case d = 1 is trivial. Suppose d ≥ 2. The implication
from (a) to (b) is merely Proposition 6.8. The other one follows, when G+P \ dZ is finite, by Proposition 6.9, and when G

+

P is a
subset of 1+ dZ, by Proposition 6.10. �

By [1], it is known that Krullmonoidswith infinite cyclic class group canhave finite, non-accepted elasticity. The following
result shows that, even if the Structure Theorem holds, the elasticity is not necessarily accepted.

Corollary 6.11. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the
class group G = C(ϕ) is an infinite cyclic group that we identify with Z. Let GP ⊂ G denote the set of classes containing prime
divisors. Suppose that 1 ∈ G+P and G

−

P = {−d,−1} for some d ∈ N. Suppose that the Structure Theorem holds for H. Then exactly
one of the following two statements holds:

(a) H is half-factorial or GP is finite.
(b) ρ(H) = d and the elasticity is not accepted.

Proof. Half-factorial monoids obviously have accepted elasticity and monoids with GP finite also have accepted elasticity
(Proposition 5.5). Thus, we assume thatH is not half-factorial and that GP is infinite, and show that under these assumptions
ρ(H) = d and the elasticity is not accepted. Note that since H is not half-factorial, we have d ≥ 2.
We recall that if A ∈ A(GP)with (−1) | A, then |A+| = 1 (as explained in the proof of Proposition 6.10).
Let B ∈ B(GP). We show that ρ(B) < d. Assume to the contrary ρ(B) ≥ d. That is, there exist z, z ′ ∈ Z(B) such that

|z ′|/|z| ≥ d. By Lemma 4.3, we know that |A+| ≤ d for each A ∈ A(GP). Thus, we get |z| ≥ v0(z)+ |B+|/d, whereas clearly
|z ′| ≤ v0(z ′)+ |B+|.
Consequently, we have ρ(B) ≤ d, and ρ(B) = d is equivalent to the following: |A+| = d for each atom A | z and |A′+| = 1

for each atom A′ | z ′. It follows that v−1(B) = 0, i.e., B ∈ B(GP \ {−1}). By [1], or Lemma 5.3 and [28, Proposition 6.3.1], we
get that ρ(B(GP \ {−1})) ≤ ρ(Z/dZ) = d/2 < d, a contradiction.
It remains to show that ρ(GP) ≥ d. We may assume that 0 /∈ GP . We note the existence of the two atoms 1(−1) and

1d(−d) inA(GP). Thus, 1 and 1d are elements ofA(GP)+. Thus, ρκ(1d) ≥ d, and the claim follows by Lemma 4.12. �

Our proofs that the Structure Theorem does not hold rely on the existence of a single exceptional factorization, yet the
following example illustrates that sets of lengths can deviate by more than a single element (or a globally bounded number
of elements) from being an AAMP.

Example 6.12. Let d, k, l ∈ N and e ∈ [1, d− 1], and set B = (e+ kd)(−e+ `d)1(k+`)d(−1)(k+`)d(−d)k+`. Then

L(B) = {1+ k+ `+ (k+ `)(d− 1)} ∪ {1+ e+ k+ `+ i(d− 1) | i ∈ [k, k+ `− 1]}
∪ {2− e+ k+ `+ i(d− 1) | i ∈ [`, `+ k]}
∪ {2+ k+ `+ i(d− 1) | i ∈ [0, k+ `− 1]}.

7. Chains of factorizations

In a large class of monoids and domains satisfying natural (algebraic) finiteness conditions, the catenary degree is
finite (see [28] for an overview and [5,29,4,38] for some recent work). However, the understanding of the structure of the
concatenating chains is still very limited.Whereas, on the one hand, the finiteness of themonotone catenary degree is a rare
phenomenon (inside the class of objects having finite catenary degree), the following two positive phenomena have been
observed. First, in a large class of monoids, all problems with the monotonicity of concatenating chains occur only at the
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beginning and the end of concatenating chains ([15, Theorem 1.1], [16, Theorem 3.1]). Second, in various settings, there is a
large subset consisting of ‘big’ elements having extremely nice concatenating chains (see [23, Theorem 4.3], [28, Theorems
7.6.9 and 9.4.11]).
Let H be a Krull monoid with infinite cyclic class group and GP ⊂ G as always. By Theorem 5.2, it suffices to consider

the situation where G+P is infinite and 2 ≤ |G
−

P | < ∞. Our first result points out that, in general, the monotone catenary
degree is infinite. In contrast to this, the main result (Corollary 7.4) shows that there is a constantM∗ such that, for a large
class of elements a, any two factorizations z and y of a with y having maximal length can be concatenated by a monotone
M∗-chain of factorizations and thus, for those factorizations z and y of a neither of which need be of maximal length, there
is anM∗-chain between z and ywhich ‘changes direction’ at most once.

Proposition 7.1. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the
class group G = C(ϕ) is an infinite cyclic group that we identify with Z. Let GP ⊂ G denote the set of classes containing prime
divisors. Suppose that −d1,−d2, d1d2 ∈ GP , where 3 ≤ d1 < d2, gcd(d1, d2) = 1 and d1 − 1 - d2 − 1, and that GP contains
infinitely many positive integers congruent to d1 + d2 modulo d1d2. Let d = gcd(d1 − 1, d2 − 1). Then, for every M, N ≥ 0,
there exists a ∈ H and z, z ′ ∈ Z(a) such that

|z ′| = |z| + d ≤ |z| + d1 − 2, (7.1)
|z| ∈ [min L(a)+ N, max L(a)− N], and (7.2)

d
(
z,
|Z |+d1−2⋃
i=1

Zi(a) \ {z}
)
> M. (7.3)

In particular, cmon(H) = ∞ and δ(H) = ∞

Proof. That cmon(H) = δ(H) = ∞ follows from (7.1) and (7.3), so we need only show (7.1), (7.2) and (7.3) hold. By
Lemma 3.3, it suffices to prove the assertions forB(GP). We may also assume without loss of generality that

N ≥ d2 − 1 and M ≥ d1,

as the theorem holding for large values ofM and N implies it holding for all smaller values.
In view of the hypotheses, there exists L ∈ GP with

L > d2M ≥ d1d2, (7.4)
L ≡ d1 mod d2 and L ≡ d2 mod d1. (7.5)

Let B ∈ B({d1d2,−d1,−d2, L}) ⊂ B(GP) be the sequence

B = L2d1d2N(−d2)2d1LN(−d1)2d2LN(d1d2)2LN .

Let

A1 = Ld1(−d1)L and A2 = Ld2(−d2)L.

Since gcd(d1, d2) = 1, it follows, in view of (7.5) and by reducing modulo d1 and d2, respectively, that A1 and A2 are both
atoms. Also define

B1 = (d1d2)(−d1)d2 and B2 = (d1d2)(−d2)d1 ,

which, since they both contain exactly one positive integer, must also be atoms. In view of (7.5), define

A0 = L(−d2)
L−d1
d2 (−d1),

which is also an atom for similar reasons.
Let z ∈ Z(B) be given by

z = Ad2N1 A
d1N
2 B

LN
1 B

LN
2 .

Since d = gcd(d1 − 1, d2 − 1), it follows that there exists an integer l ∈ [1, d2 − 1] such that

l(d2 − d1) ≡ −d mod d2 − 1.

Let

l′ =
l(d2 − d1)+ d
d2 − 1

∈ N. (7.6)

Then, since d = gcd(d1 − 1, d2 − 1) ≤ d1 − 1, it follows that 1 ≤ l′ ≤ l ≤ d2 − 1. Note that we have the identities

π(Ad21 B
L
2) = π(A

d1
2 B

L
1) and π(A2B1) = π(A

d2
0 B2).
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Thus, by considering the definition of z and recalling that N ≥ d2 − 1 ≥ l ≥ l′, we see that

z ′ = Ad2N−ld21 Ad1N+ld1−l
′

2 Al
′d2
0 B

LN+lL−l′
1 BLN−lL+l

′

2

is another factorization z ′ ∈ Z(B) besides z.
Note that |z ′|− |z| = −l(d2− d1)+ l′(d2− 1) = d. Moreover, since d1− 1 - d2− 1, d1 < d2 and gcd(d1− 1, d2− 1) = d,

it follows that d < d1 − 1. Thus (7.1) holds. Also, the factorizations

A2d1N2 B2LN1 ∈ Z(B) and A2d2N1 B2LN2 ∈ Z(B)

show that

min L(B)+ N ≤ min L(B)+ (d2 − d1)N ≤ |z| ≤ max L(B)− (d2 − d1)N ≤ max L(B)− N,

whence (7.2) holds. It remains to establish (7.3). We begin with the following claim.
Claim 1: If A|B is an atom with d1d2 ∈ supp(A), then d1d2 is the only positive element dividing A and vd1d2(A) = 1.
Suppose instead that a | A(d1d2)−1with a ∈ {L, d1d2}. Thenwemust have v−d2(A) < d1 and v−d2 < d1, else (d1d2)(−d1)

d2

or (d1d2)(−d2)d1 would be a proper, nontrivial zero-sum subsequence dividing A, contradicting that A is an atom. But now
(in view of (7.4))

2d1d2 > −σ(A−) = σ(A+) ≥ a+ d1d2 ≥ min{L, d1d2} + d1d2 = 2d1d2,

a contradiction. So Claim 1 is established.

In view of Claim 1, we see that, in any factorization y of B, there will always be 2LN atoms A having A(d1d2)−1 consisting
entirely of negative terms. Thus the length of any factorization of B is determined entirely by the number of atoms containing
an L. Moreover, by considering sums modulo di, we find (in view of (7.5) and gcd(d1, d2) = 1) that (d1d2)(−d1)d2 and
(d1d2)(−d2)d1 are the only atoms dividing Bwhich contain d1d2. As a result, we in fact have the factorization of B completely
determined by how the 2d1d2N terms equal to L are factored (that is, if yL|y is the subfactorization consisting of all atoms
containing an L, then π(y−1L y) has a unique factorization, which will always have length 2LN). We continue with the next
claim.
Claim 2: If A|B is an atom with L,−d1,−d2 ∈ supp(A), then vL(A) = 1.
Suppose instead that L2|A. In view of (7.5) and (7.4), both L−d1d2 and

L−d2
d1
are positive integers. Consequently, we must

have v−d1(A) <
L−d2
d1
and v−d2 <

L−d1
d2
, else

L(−d1)(L−d2)/d1(−d2) or L(−d2)(L−d1)/d2(−d1)

would be a proper, nontrivial zero-sum subsequence dividing A, contradicting that A is an atom. But now

2L− d1 − d2 > −σ(A−) = σ(A+) ≥ 2L,

a contradiction. So Claim 2 is established.

In view of (7.5), gcd(d1, d2) = 1 and Claim 1 and 2, we see that if A|B is an atom with L ∈ supp(A), then either

(a) A = A1 and v−d2(A) = 0,
(b) A = A2 and v−d1(A) = 0, or
(c) vL(A) = 1 and vd1d2(A) = 0.

Let y ∈ Z(B) be a factorizationwith d(z, y) ≤ M and let yL|y and zL|z be the corresponding sub-factorizations consisting of
all atomswhich contain an L. In view of the definition of z, since d(z, y) ≤ M and L > d2M (by (7.4)), and since (d1d2)(−d1)d2
is the only atom containing a−d1 in z−1L z, it follows that

v−d1(π(yL)) ≤ v−d1(π(zL))+Md2 = d2NL+Md2 < d2NL+ L;

thus themultiplicitym1 of the atom A1 in y is at most d2N (since each such atom A1 requires L terms equal to−d1). Likewise,

v−d2(π(yL)) ≤ v−d2(π(zL))+Md1 = d1NL+Md1 < d1NL+ L,

whence the multiplicitym2 of the atom A2 in y is at most d1N .
Let m0 be the number of atoms dividing y containing exactly one term L. Since all atoms containing an Lmust be of one

of the three previously described forms, it follows that

d1m1 + d2m2 +m0 = vL(B) = 2d1d2N. (7.7)

Letm′0,m
′

1 andm
′

2 be analogously defined for z instead of y. Thenm
′

0 = 0,m
′

1 = d2N andm
′

2 = d1N . In view of (7.7) and the
comments after Claim 1, and sincem1 ≤ d2N = m′1 andm2 ≤ d1N = m

′

2, it follows that

|y| = |z| + (m′1 −m1)(d1 − 1)+ (m
′

2 −m2)(d2 − 1) ≥ |z|.
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Moreover, unlessm1 = m′1 andm2 = m
′

2, then |y| ≥ |z|+d1−1. On the other hand, ifm1 = m
′

1 = d2N andm2 = m
′

2 = d1N ,
thenm0 = 0 (in view of (7.7)), whence zL = yL (recalling that all atoms containing an Lmust be of one of the three previously
described forms), from which z = y follows by the comments after the proof of Claim 1. Consequently, we conclude that
d(z, y) ≤ M implies either y = z or |y| ≥ |z| + d1 − 1, which establishes (7.3), completing the proof. �

The following lemma helps describe when an atom can contain more than one positive term.

Lemma 7.2. Let G0 ⊂ Z be a condensed set such that G−0 is finite and nonempty. Let M = |minG0|, let U ∈ A(G0) and
let R|U− be the subsequence consisting of all negative integers with multiplicity at least M − 1 in U. Suppose there is some
L ∈ Σ(U+) \ {σ(U+)} such that

|U+| ≥ 2, L ≥ (M − 1)2, and σ(U+) ≥ L+ (M − 1)2. (7.8)

Then the following statements hold:

1. There is some a ∈ supp(U) ∩ G−0 with va(U) ≥ M − 1, i.e., R is nontrivial.
2. For any such a ∈ supp(R), we have (−L+ aZ) ∩Σ(U−) = ∅.
3. There exists a subsequence R′|U− with R|R′ such that L /∈ 〈supp(R′)〉 = nZ and |R′−1U−| ≤ n − 2; in particular,
supp(R) ⊂ supp(R′) ⊂ nZ does not generate Z.

Proof. 1. Let UL|U+ be a proper subsequence with sum equal to L. Note that |G−0 | ≤ M . Thus σ(U
+) ≥ L ≥ (M − 1)2 >

(M − 2)|G−0 |, whence the pigeonhole principle implies that there is some a ∈ supp(U) ∩ G
−

0 with va(U) ≥ M − 1.

2. Let a|U− with va(U) ≥ M − 1 and let φa : Z → Z/aZ denote the natural homomorphism. We say that a sequence
T is a zero-sum sequence (zero-sum free, resp.) modulo a if φa(T ) ∈ F (Z/aZ) has the respective property. Suppose
(−L+aZ)∩Σ(U−) is nonempty and let S be a zero-sum freemodulo a subsequence S|U− (possibly trivial) with σ(S) ≡ −L
mod a. Note that any zero-sum free modulo a subsequence T |U− has length at most D(Z/aZ)− 1 = |a| − 1 [28, Theorem
5.1.10], and thus

|σ(T )| ≤ (|a| − 1) · |min((supp(U) ∩ G−0 ) \ {a})| ≤ (M − 1)
2
≤ L; (7.9)

in particular, |σ(S)| ≤ (M − 1)2 ≤ L.
Now factor S−1U− = S0S1 · . . . · Stava(U

−), where S0 is zero-sum free modulo a and each Si, for i ≥ 1, is an atom modulo
a. In view of |σ(S0)| ≤ (M − 1)2 (from (7.9)) and the hypothesis σ(U+) ≥ L+ (M − 1)2, we have

|σ(SS1 · . . . · Stava(U
−))| = |σ(S−10 U

−)| ≥ L. (7.10)

If |σ(SS1 ·. . .·St)| ≤ L, then it follows, in view of (7.10) and the definitions of S and the Si, that we can append on to SS1 ·. . .·St
a sufficient number of terms equal to a so as to obtain a subsequence BL|S−10 U

− with SS1 · . . . ·St |BL and σ(BL) = −L, and now
ULBL|U is a proper, nontrivial zero-sum subsequence, contradicting that U is an atom. Therefore |σ(SS1 · . . . ·St)| > L, and let
t ′ < t be the maximal non-negative integer such that |σ(SS1 · . . . · St ′)| ≤ L, which exists in view of |σ(S)| ≤ (M − 1)2 ≤ L.
By its maximality, we have

|σ(S1 · . . . · St ′)| > L− |σ(S)| − |σ(St ′+1)| ≥ L− |σ(S)| − |a|M, (7.11)

where the second inequality follows by recalling that St ′+1 is an atommodulo a and thus has length at most D(Z/aZ) = |a|.
From the definitions of all respective quantities, both the left and right hand side of (7.11) is divisible by a, whence

|σ(S1 · . . . · St ′)| ≥ L− |σ(S)| − |a|(M − 1).

But nowwe see, in view of va(U) ≥ M−1 and the definition of t ′, that we can append on to SS1 · . . . · St ′ a sufficient number
of terms equal to a so as to obtain a subsequence BL|S−10 U

− with SS1 · . . . · St ′ |BL and σ(BL) = −L, once again contradicting
that U is an atom. So we conclude that (−L+ aZ) ∩Σ(U−) is empty.

3. In view of part 2, we see that

−L /∈ 〈a〉 +Σ(U−). (7.12)

Now, if |a−va(U
−)U−| ≤ |a| − 2, then supp(R) = {a} (recall |a| ≤ M and vg(R) ≥ M − 1 for all g ∈ supp(R)) and the final

part of the lemma holds with R′ = R in view of (7.12). Therefore we may assume y = |a−va(U
−)U−| ≥ |a| − 1. Note that

(7.12) implies that

φa(−L) /∈ Σy(φa(a−va(U
−)U−)0y) = Σ(φa(U−)) 6= Z/aZ.

As a result, applying the Partition Theorem (see [34, Theorem 3]) to φa(a−va(U
−)U−)0y, now yields part 3. To bemore precise,

we apply that result with sequences S = S ′ = φa(a−va(U
−)U−)0y and number of summands n = y; also note that the

resulting coset from the Partition Theorem must be a subgroup in view of the high multiplicity of 0 and that R|R′ since
vg(R) ≥ M − 1 > |a| − 2 for all g ∈ supp(R). �
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Before stating the next result, we need to first introduce some notions. Let G0 ⊂ Z \ {0} be a condensed set such that G−0
is finite and nonempty, and let B ∈ B(G0). If z = A1 · . . . · An ∈ Z(B), with Ai ∈ A(G0), then we let

z+ = A+1 · . . . · A
+

n ∈ F (A(G0)+)

and Z(B)+ = {z+ | z ∈ Z(B)}. We can then define a partial order on Z(B)+ by declaring, for z+, y+ ∈ Z(B)+, that z+ ≤ y+
when z+ = A+1 · . . . · A

+
n ∈ Z(B)+, where Ai ∈ A(G0),

y = (B1,1 · . . . · B1,k1) · (B2,1 · . . . · B2,k2) · . . . · (Bn,1 · . . . · Bn,kn)

with Bj,i ∈ A(G0) and A+j = B
+

j,1 · . . . · B
+

j,kj
for j ∈ [1, n] and i ∈ [1, kj].

We then define Υ (B) to be all those factorizations z ∈ Z(B) for which z+ ∈ Z(B)+ is maximal with respect to this partial
order.
Note that, if z, y ∈ Z(B) with z+ � y+, then |z| < |y|. Thus Υ (B) includes all factorizations z ∈ Z(B) of maximal length

|z| = max L(B), and equality holds, namely

Υ (B) = {z ∈ Z(B) | |z| = |B+|}, (7.13)

when max L(B) = |B+|. If H is a Krull monoid, ϕ : H → F (P) a cofinal divisor homomorphism and a ∈ H , then we define

Υ (a) = {z ∈ Z(a) | β(z) ∈ Υ (β(a))}.

For a pair of monoids H ⊂ D, we recall the definition of the relative Davenport constant, originally introduced in [24] and
denoted D(H,D), which is the minimum N ∈ N ∪ {∞} such that if z ∈ Z(D) = F (A(D)) with π(z) ∈ H , then there exists
z ′|z with π(z ′) ∈ H and |z ′| ≤ N .
Next, we introduce two newmonoids associated toF (G0). We assume that ∅ 6= G0 ⊂ Z\{0}, yet here we do not assume

that G0 is condensed. Consider the free monoid F (G0)× F (G0) and let

E(G0) = {(S1, S2) ∈ F (G0)× F (G0) | σ(S1) = σ(S2)} ⊂ F (G0)× F (G0)

the subset of pairs of sequences with equal sum and

S(G0) = {(S1, S2) ∈ F (G0)× F (G0) | S1 = S2} ⊂ E(G0) ⊂ F (G0)× F (G0)

the subset of symmetric pairs. Note both E(G0) and S(G0) aremonoids; furthermore, S(G0) is saturated and cofinal in E(G0),
andE(G0) is saturated and cofinal inF (G0)×F (G0). Thus, if we letG′ denote the class group of the inclusionS(G0) ↪→ E(G0)
and let

G′0 = {[u] ∈ G
′
| u ∈ A(E(G0))} ⊂ G′,

then [24, Lemma 4.4] shows that (recall that, due to the cofinality, the definition of the class group in that paper is equivalent
to the present one)

D(S(G0), E(G0)) = D(G′0). (7.14)

Note that, if (S1, S2) ∈ A(E(G0)), then S1(−S2) ∈ A(G0∪−G0), whence |S1|+|S2| ≤ D(G0∪−G0); by [28, Theorem 3.4.2.1],
we know that, for a finite subset P of an abelian group, we have both D(P) andA(P) finite. Consequently, if G0 is finite, then
D(G0 ∪−G0) is finite, whenceA(E(G0)) is finite, which in turn implies G′0, and hence also D(G

′

0), is finite. Therefore, in view
of (7.14), we conclude that

D(S(G0), E(G0)) <∞ (7.15)

for G0 finite.

Theorem 7.3. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the class
group G = C(ϕ) is an infinite cyclic group that we identify with Z. Let GP ⊂ G denote the set of classes containing prime divisors,
and suppose that G−P is finite. Let a ∈ H and M = |min(supp(β(a)))|.

1. For any factorization z ∈ Z(a), there exists a factorization y ∈ Υ (a) and a chain of factorizations z = z0, . . . , zr = y of a
such that

|z| = |z0| ≤ · · · ≤ |zr | = |y| and d(zi, zi+1) ≤ max{M · D(S(G−P ), E(G
−

P )), 2} <∞

for all i ∈ [0, r − 1]; in fact β(z0)+ ≤ β(z1)+ ≤ . . . ≤ β(zr)+, where≤ is the partial order from the definition of Υ (β(a)).
2. For any two factorizations z, y ∈ Υ (a) with β(z)+ = β(y)+, there exists a chain of factorizations z = z0, . . . , zr = y of a
such that

β(z)+ = β(zi)+ = β(y)+ and d(zi, zi+1) ≤ max{D(S(G−P ), E(G
−

P )), 2} <∞

for all i ∈ [0, r − 1]; in particular, |z| = |zi| = |y| for all i ∈ [0, r].
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Proof. We set B = β(a). By Lemma 3.3, it suffices to prove the assertion forB(GP) and B. As 0 is a prime divisor ofB(GP),
we may w.l.o.g. assume 0 /∈ supp(B).
Note D(S(G−P ), E(G

−

P )) <∞ follows from (7.15). Also, for zi, zi+1 ∈ Z(S), we have |zi| ≤ |zi+1|whenever z+i ≤ z
+

i+1, and
|zi| = |zi+1| whenever z+i = z

+

i+1 (where ≤ is the partial order from the definition of Υ (B)). Let z ∈ Z(B) and let y ∈ Υ (B)
with z+ ≤ y+. We will construct a chain of factorizations z = z0, . . . , zr of B such that z+i ≤ z

+

i+1, either zr = y or z
+ < z+r ,

and

d(zi, zi+1) ≤ M · D(S(G−P ), E(G
−

P )) <∞ (when z+i < z
+

i+1) (7.16)

d(zi, zi+1) ≤ D(S(G−P ), E(G
−

P )) <∞ (when z+i = z
+

i+1), (7.17)

for i ∈ [0, r − 1]. Since both parts of the proposition follow by repeated application of this statement, the proof will be
complete once we show the existences of such a chain of factorizations z = z0, . . . , zr = y.
Since z+ ≤ y+, we have

z = A1 · . . . · An
y = (B1,1 · . . . · B1,k1) · (B2,1 · . . . · B2,k2) · . . . · (Bn,1 · . . . · Bn,kn)

with Aj, Bj,i ∈ A(G0) and A+j = B
+

j,1 · . . . ·B
+

j,kj
, for j ∈ [1, n] and i ∈ [1, kj]. Then A+j = B

+

j,1 · . . . ·B
+

j,kj
and σ(Aj) = σ(Bj,i) = 0,

for all j and i. Thus, for j ∈ [1, n], let

Tj = (A−j , (B
−

j,1 · . . . · B
−

j,kj
)) ∈ E(G−P ).

For each j ∈ [1, n], let

Tj,1 · . . . · Tj,lj ∈ Z(E(G−P ))

be a factorization of Tj with each Tj,i ∈ A(E(G−P )). Now let

T =
n∏
j=1

lj∏
i=1

Tj,i ∈ Z(E(G−P )). (7.18)

However, since z, y ∈ Z(B) both factor the same element B, we in fact have

π(T ) ∈ S(G−P ).

Let T = T ′T ′′ where T ′|T is the maximal length sub-factorization with all atoms dividing T ′ from S(G−P ).
If T ′′ = 1, then Aj =

∏kj
i=1 Bj,i for every j ∈ [1, n]. In view of Aj, Bj,i ∈ A(GP), we get kj = 1 for every j ∈ [1, n], that is

z = y, and so there is nothing to show. Therefore we may assume T ′′ is nontrivial and proceed by induction on |z| and then
|T ′′|, assuming (7.16) and (7.17) hold for z ′ ∈ Z(B) when z+ < z ′+ or when z+ = z ′+ and |R′′| < |T ′′|, where R′′ is defined
for z ′ as T ′′ was for z.
Let W =

∏
j∈J
∏
i∈Ij
Tj,i be a nontrivial subsequence of T ′′, where J ⊂ [1, n] and Ij ⊂ [1, lj] for j ∈ J , such that

π(W ) ∈ S(G−P ). Note, since π(T
′) ∈ S(G−P ) (by definition) and since π(T ) ∈ S(G−P ) (by (7.18)), we have π(T

′′) ∈ S(G−P ),
whence we may w.l.o.g. assume |W | ≤ D(S(G−P ), E(G

−

P )) (in view of the definition of the relative Davenport constant).
WriteW =

∏
j∈J Wj with eachWj =

∏
i∈Ij
Tj,i ∈ Z(E(G−P )). Moreover, for j ∈ J , let π(Wj) = (Xj, Yj) ∈ E(G−P ).

Define a new factorization z1 = z ′1 · . . . · z
′
n ∈ Z(G−P ) by letting z

′

j = Aj for j /∈ J and letting z
′

j ∈ Z(AjX−1j Yj) for j ∈ J—by
construction Xj is a subsequence of Aj, and since (Xj, Yj) ∈ E(G−P ), we have σ(Xj) = σ(Yj), and thus σ(AjX

−1
j Yj) = σ(Aj) = 0

for all j ∈ J , so z1 is well defined. Also, since π(W ) = π(
∏
j∈J Wj) ∈ S(G−P ), it follows (by definition of S(G

−

P )) that∏
j∈J

Xj =
∏
j∈J

Yj,

and thus z1 ∈ Z(B). Moreover, by construction, we have z+ ≤ z+1 , and by Lemma 4.3, we have |Bj| ≤ M for all j. Thus

d(z, z1) ≤ M|J| ≤ M|W | ≤ M · D(S(G−P ), E(G
−

P )). (7.19)

Additionally, if z ∈ Υ (B), then z+ ≤ z+1 implies that z
+
= z+1 = y

+, whence |z| = |z1| and |z ′j | = 1 for all j, in which case
the estimate (7.19) improves to

d(z, z1) ≤ |J| ≤ |W | ≤ D(S(G−P ), E(G
−

P )).

Finally, if z+ = z+1 , then, by construction, the sequence R = R
′R′′—whose role for z1 is analogous to the role of T = T ′T ′′ for

z—can be defined so that R′′ = T ′′W−1, in which case |R′′| < |T ′′|. Consequently, applying the induction hypothesis to z1
completes the proof. �
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Corollary 7.4. Let H be a Krull monoid and ϕ : H → F (P) a cofinal divisor homomorphism into a free monoid such that the
class group G = C(ϕ) is an infinite cyclic group that we identify with Z. Let GP ⊂ G denote the set of classes containing prime
divisors, and suppose that G−P is finite.
Let a ∈ H with max L(a) = |β(a)+| + v0

(
β(a)

)
and let M = |min(supp(β(a)))|. Then, for any factorization z ∈ Z(a)

and any factorization y ∈ Z(a) with |y| = |max L(a)|, there exists a chain of factorizations z = z0, . . . , zr = y of a such that
|z| = |z0| ≤ · · · ≤ |zr | = |y| and

d(zi, zi+1) ≤ max{M · D(S(G−P ), E(G
−

P )), 2} ≤ max{|minGP | · D(S(G
−

P ), E(G
−

P )), 2} <∞

for all i ∈ [0, r − 1].

Proof. This follows directly from Theorem 7.3 in view of (7.13). �

We end this section with a result showing that the assumption max L(a) = |β(a)+| + v0
(
β(a)

)
holds for a large class of

a ∈ H . We formulate the result in the setting of zero-sum sequences. SinceB(GP) is factorial whenM = |minGP | ≤ 1, the
assumptionM ≥ 2 below is purely for avoiding distracting technical points in the statement and proof.

Proposition 7.5. Let G0 ⊂ Z \ {0} be a condensed set with |G0| ≥ 2. Let B ∈ B(G0) be such that, for M = |min(supp(B))|, we
have M ≥ 2 andmin(supp(B)+) ≥ M(M2 − 1). Then, at least one of the following statements holds:

(a) There exists a subset A ⊂ supp(B−) and a factorization z ∈ Z(B) such that 〈supp(B+)〉 6⊂ 〈A〉 (in particular, 〈A〉 6= Z) and
every atom U|z has

vx(U) ≤ 2M − 2 for all x ∈ supp(B) \ A. (7.20)

(b) (i) max L(B) = |B+|, and
(ii) for any factorization z ∈ Z(B), there exists a chain of factorizations z = z0, . . . , zr of B such that

|z| = |z0| < · · · < |zr | = |B+| and d(zi, zi+1) ≤ M2

for all i ∈ [0, r − 1].

Proof. We assume (a) fails and show that (b) follows. Note, by Lemma 4.3, that vx(U) ≤ M ≤ 2M − 2 holds for any atom
U ∈ A(G0) and x ≥ 0, whence (7.20) can only fail for some x ∈ G−0 . To establish (i) and (ii), we need only show that, given an
arbitrary factorization z ∈ Z(B) with |z| < |B+|, there is another factorization z ′ ∈ Z(B) with |z| < |z ′| and d(z, z ′) ≤ M2.
We proceed to do so.
Let z ∈ Z(B)with |z| < |B+|. Then there must exists some atom U0|z such that |U+0 | ≥ 2. Let A ⊂ supp(B) be all those a

for which there exists some atom V |z with va(V ) ≥ 2M − 1. We must have

〈supp(B+)〉 ⊂ 〈A〉, (7.21)

else (a) holds. Let a1, . . . , at ∈ A be those elements such that va(U0) ≤ M − 2, let at+1, . . . , a|A| be the remaining element
of A and, for all i ∈ [1, t], let Ui|z be an atom with vai(Ui) ≥ 2M − 1. Note that Ui 6= U0 for i ≤ t since otherwise

2M − 1 ≤ vai(Ui) = vai(U0) ≤ M − 2 ≤ 2M − 2,

a contradiction. Also, t < |A| ≤ M since otherwise

2M(M2 − 1) ≤ 2min(supp(B+)) ≤ σ(U+0 ) = −σ(U
−

0 ) ≤ M(2M − 2),

a contradiction.
We proceed to describe a procedure to swap only negative integers between the Ui which results in new blocks

U ′0,U
′

1, . . . ,U
′
t ∈ B(G0) with U ′0U

′

1 · . . . · U
′
t = U0U1 · . . . · Ut , with U

′+

i = U
+

i for all i, and with U
′

0 not an atom. Once
this is done, then, letting zi ∈ Z(U ′i ), we can define z

′ to be

z ′ = z0z1 · . . . · ztU−10 U
−1
1 · . . . · U

−1
t z.

Then |z ′| > |z| in view of U ′0 not being an atom, while, in view of t ≤ |A| − 1 ≤ M − 1 and Lemma 4.3, we have

d(z, z ′) ≤
t∑
i=0

|U+i | ≤ (t + 1)M ≤ M
2.

Thus the proof of (i) and (ii) will be complete once we show that such a process exists.
Observe, for i ∈ [1, t], that we can exchange a

ci,j
i |Ui for c

ai
i,j|U0 provided there is some term ci,j ∈ supp(U

−

0 ) with
vci,j(U0) ≥ ai and vai(Ui) ≥ ci,j, and thiswill result in two new zero-sum subsequences obtained by only exchanging negative
terms. The idea in general is to repeatedly and simultaneously perform such swaps for the ai using disjoint sequences

t∏
i=1

(
caii,1c

ai
i,2 · . . . · c

ai
i,ri

) ∣∣∣ U0a−M+1t+1 · . . . · a
−M+1
|A| (7.22)
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with
ri−1∑
j=1

|ci,j| < M − 1 but
ri∑
j=1

|ci,j| ≥ M − 1 (7.23)

for all i ∈ [1, t], and let U ′0,U
′

1, . . . ,U
′
t be the resulting zero-sum sequences. Then vai(U

′

0) ≥ M − 1 for i ≥ t + 1 by
construction, and vai(U

′

0) ≥
∑ri
j=1 |ci,j| ≥ M−1 for i ≤ t; consequently, in view ofmin(supp(B

+)) ≥ M(M2−1) ≥ (M−1)2

and |U ′0
+
| = |U+0 | ≥ 2, we see that we can apply Lemma 7.2 to U

′

0, whence (7.21) and va(U ′0) ≥ M − 1 for a ∈ A imply
that U ′0 cannot be an atom, and hence the U

′

i have the desired properties. Thus it remains to show that a sequence satisfying
(7.22) and (7.23) exists and that each ai, for all i ∈ [1, t], has sufficient multiplicity in Ui.
Note that (7.23) and the definition of ai ∈ A imply

ri∑
j=1

|ci,j| ≤
ri−1∑
j=1

|ci,j| + |ci,ri | ≤ M − 2+M ≤ vai(Ui)

for all i ∈ [1, t]. Thus the multiplicity of each ai in Ui is large enough to perform such simultaneous swaps. Also,∣∣∣∣∣σ
(
t∏
i=1

(caii,1c
ai
i,2 · . . . · c

ai
i,ri
)

)∣∣∣∣∣ ≤ t∑
i=1

(2M − 2)|ai|. (7.24)

We turn our attention now to showing (7.22) and (7.23) hold.
We can continue to remove subsequences caii,j|U0a

−M+1
t+1 · . . . · a

−M+1
|A| until the multiplicity of every term is less than M .

But this means a sequence satisfying (7.22) and (7.23) can be found, in view of the estimate (7.24), provided

|σ(U−0 )| − (M − 1)
|A|∑
i=t+1

|ai| −M(M − 1)| supp(B−)| ≥
t∑
i=1

(2M − 2)|ai|.

However, if this fails, then we have (since |U+0 | ≥ 2)

2M(M2 − 1) ≤ 2min(supp(B+)) ≤ σ(U+0 ) = −σ(U
−

0 ) = |σ(U
−

0 )|

<

t∑
i=1

(2M − 2)|ai| + (M − 1)
|A|∑
i=t+1

|ai| +M(M − 1)| supp(B−)|

< (2M − 2)
|A|∑
i=1

|ai| +M(M2 − 1) ≤ (2M − 2)
M∑
i=1

i+M(M2 − 1)

= 2M(M2 − 1),

a contradiction, completing the proof. �
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