352 research outputs found

    Search for Solar Axions Produced in the p+d3He+Ap + d \rightarrow\rm{^3He}+ A Reaction

    Full text link
    A search for the axioelectric absorption of 5.5-MeV solar axions produced in the p+d3He+γ(5.5MeV)p+d\rightarrow \rm{^3He}+\gamma(5.5 \rm{MeV}) reaction was performed with two BGO detectors placed inside a low-background setup. A model independent limit on axion-photon and axion-nucleon couplings was obtained: gAe×gAN3.2×109(mA=0)|g_{Ae}\times g_{AN}| \leq 3.2\times 10^{-9} (m_A=0). Constraints on the axion-electron coupling constant were obtained for axions with masses in the (0.11.0)(0.1-1.0) MeV range: gAe(1.89.0)×107g_{Ae}\leq (1.8-9.0)\times 10^{-7}. The solar positron flux from Ae+e+A\rightarrow e^-+e^+ decay was determined for axions with masses mA>2mem_A > 2m_e. Using the existing experimental data on the interplanetary positron flux, a new constraint on the axion-electron coupling constant for axions with masses in the (1.25.4)(1.2-5.4) MeV range was obtained: gAe(15)×1017g_{Ae} \leq (1-5)\times 10^{-17}.Comment: 6 pages, 5 figure

    Phase Diagram of a Spin Ladder with Cyclic Four Spin Exchange

    Full text link
    We present the phase diagram of the S=1/2S=1/2 Heisenberg model on the two leg ladder with cyclic four spin exchange, determined by a combination of Exact Diagonalization and Density Matrix Renormalization Group techniques. We find six different phases and regimes: the rung singlet phase, a ferromagnetic phase, two symmetry broken phases with staggered dimers and staggered scalar chiralities, and a gapped region with dominant vector chirality or collinear spin correlations. We localize the phase transitions and investigate their nature.Comment: 4 pages, 6 figures, REVTeX 4, published versio

    Long slit Spectropolarimetry of Jupiter and Saturn

    Full text link
    We present ground-based limb polarization measurements of Jupiter and Saturn consisting of full disk imaging polarimetry for the wavelength 7300 A and spatially resolved (long slit) spectropolarimetry covering the wavelength range 5200 to 9350 A. For the polar region of Jupiter we find for wl=6000 A a very strong radial polarization with a seeing corrected maximum of about +11.5% in the South and +10.0% in the North. Our model calculations demonstrate that the high limb polarization can be explained by strongly polarizing (p~1.0), high albedo (omega~0.98) haze particles with a scattering asymmetry parameter of g~0.6 as expected for aggregate particles. The deduced particle parameters are distinctively different when compared to lower latitude regions. The spectropolarimetry of Jupiter shows a decrease in the polar limb polarization towards longer wavelengths and a significantly enhanced polarization in strong methane bands when compared to the adjacent continuum. For lower latitudes the fractional polarization is small, negative, and it depends only little on wavelength except for the strong CH4-band at 8870 A. The South pole of Saturn shows a lower polarization (p~1.0-1.5%) than the poles of Jupiter. The spectropolarimetric signal for Saturn decrease rapidly with wavelength and shows no significant enhancements in the fractional polarization in the absorption bands. These properties can be explained by a vertically extended stratospheric haze region composed of small particles <100nm. In addition we find a previously not observed strong polarization feature (p=1.5-2.0%) near the equator of Saturn. The origin of this polarization signal is unclear but it could be related to a seasonal effect.Comment: Accepted for publication in ICARU

    High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity

    Full text link
    Planet formation studies are often focused on solar-type stars, implicitly considering our Sun as reference point. This approach overlooks, however, that Herbig Ae/Be stars are in some sense much better targets to study planet formation processes empirically, with their disks generally being larger, brighter and simply easier to observe across a large wavelength range. In addition, massive gas giant planets have been found on wide orbits around early type stars, triggering the question if these objects did indeed form there and, if so, by what process. In the following I briefly review what we currently know about the occurrence rate of planets around intermediate mass stars, before discussing recent results from Herbig Ae/Be stars in the context of planet formation. The main emphasis is put on spatially resolved polarized light images of potentially planet forming disks and how these images - in combination with other data - can be used to empirically constrain (parts of) the planet formation process. Of particular interest are two objects, HD100546 and HD169142, where, in addition to intriguing morphological structures in the disks, direct observational evidence for (very) young planets has been reported. I conclude with an outlook, what further progress we can expect in the very near future with the next generation of high-contrast imagers at 8-m class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables and reference

    Effects of Population Based Screening for Chlamydia Infections in The Netherlands Limited by Declining Participation Rates

    Get PDF
    Background: A large trial to investigate the effectiveness of population based screening for chlamydia infections was conducted in the Netherlands in 2008-2012. The trial was register based and consisted of four rounds of screening of women and men in the age groups 16-29 years in three regions in the Netherlands. Data were collected on participation rates and positivity rates per round. A modeling study was conducted to project screening effects for various screening strategies into the future. Methods and Findings: We used a stochastic network simulation model incorporating partnership formation and dissolution, aging and a sexual life course perspective. Trends in baseline rates of chlamydia testing and treatment were used to describe the epidemiological situation before the start of the screening program. Data on participation rates was used to describe screening uptake in rural and urban areas. Simulations were used to project the effectiveness of screening on chlamydia prevalence for a time period of 10 years. In addition, we tested alternative screening strategies, such as including only women, targeting different age groups, and biennial screening. Screening reduced prevalence by about 1% in the first two screening rounds and leveled off after that. Extrapolating observed participation rates into the future indicated very low participation in the long run. Alternative strategies only marginally changed the effectiveness of screening. Higher participation rates as originally foreseen in the program would have succeeded in reducing chlamydia prevalence to very low levels in the long run. Conclusions: Decreasing participation rates over time profoundly impact the effectiveness of population based screening for chlamydia infections. Using data from several consecutive rounds of screening in a simulation model enabled us to assess the future effectiveness of screening on prevalence. If participation rates cannot be kept at a sufficient level, the effectiveness of screening on prevalence will remain limited

    HD 142527: quantitative disk polarimetry with SPHERE

    Get PDF
    We present high-precision photometry and polarimetry for the protoplanetary disk around HD142527, with a focus on determining the light scattering parameters of the dust. We re-reduced polarimetric differential imaging data of HD142527 in the VBB (735 nm) and H-band (1625 nm) from the ZIMPOL and IRDIS subinstruments of SPHERE/VLT. With polarimetry and photometry based on reference star differential imaging, we were able to measure the linearly polarized intensity and the total intensity of the light scattered by the circumstellar disk with high precision. We used simple Monte Carlo simulations of multiple light scattering by the disk surface to derive constraints for three scattering parameters of the dust: the maximum polarization of PmaxP_{\rm max}, the asymmetry parameter gg, and the single-scattering albedo ω\omega. We measure a reflected total intensity of 51.4±1.551.4\pm1.5 mJy and 206±12206\pm12 mJy and a polarized intensity of 11.3±0.311.3\pm0.3 mJy and 55.1±3.355.1\pm3.3 mJy in the VBB and H-band, respectively. We also find in the visual range a degree of polarization that varies between 28%28\% on the far side of the disk and 17%17\% on the near side. The disk shows a red color for the scattered light intensity and the polarized intensity, which are about twice as high in the near-infrared when compared to the visual. We determine with model calculations the scattering properties of the dust particles and find evidence for strong forward scattering (g0.50.75g\approx 0.5-0.75), relatively low single-scattering albedo (ω0.20.5\omega \approx 0.2-0.5), and high maximum polarization (Pmax0.50.75P_{\rm max} \approx 0.5-0.75) at the surface on the far side of the disk for both observed wavelengths. The optical parameters indicate the presence of large aggregate dust particles, which are necessary to explain the high maximum polarization, the strong forward-scattering nature of the dust, and the observed red disk color.Comment: 20 pages, 14 figure

    Linear and Second-order Optical Response of the III-V Mono-layer Superlattices

    Full text link
    We report the first fully self-consistent calculations of the nonlinear optical properties of superlattices. The materials investigated are mono-layer superlattices with GaP grown on the the top of InP, AlP and GaAs (110) substrates. We use the full-potential linearized augmented plane wave method within the generalized gradient approximation to obtain the frequency dependent dielectric tensor and the second-harmonic-generation susceptibility. The effect of lattice relaxations on the linear optical properties are studied. Our calculations show that the major anisotropy in the optical properties is the result of strain in GaP. This anisotropy is maximum for the superlattice with maximum lattice mismatch between the constituent materials. In order to differentiate the superlattice features from the bulk-like transitions an improvement over the existing effective medium model is proposed. The superlattice features are found to be more pronounced for the second-order than the linear optical response indicating the need for full supercell calculations in determining the correct second-order response.Comment: 9 pages, 4 figures, submitted to Phy. Rev.
    corecore