550 research outputs found

    The Effects of Parathyroid Hormone Applied at Different Regimes on the Trochanteric Region of the Femur in Ovariectomized Rat Model of Osteoporosis

    Get PDF
    This study aims to investigate the effects of two application frequencies of parathyroid hormone on the trochanteric region of rat femur. Forty-three-month-old female Sprague-Dawley rats were divided into 4 groups (n = 10/group). Three groups were ovariectomized, and 8 weeks later they were administered the following treatments (5 weeks): soy-free diet (OVX), subcutaneously injected PTH (0.040 mg/kg) 5 days a week (PTH 5x/w), subcutaneously injected PTH (0.040 mg/kg) every 2 days (PTH e2d), and a sham group. The values of the biomechanical and histomorphometric parameters showed higher results in 5x/w animals in comparison to the OVX and PTH 2ed groups. The ratio between bone diameter/marrow diameter (B.Dm/Ma.Dm) in subtrochanteric cross sections did not show any significant differences between PTH 5x/w and PTH e2d. The increased bone formation rate was observed under PTH treatment in both groups mainly at the endosteal side. The endosteum seems here to be one of the targets of PTH with an accelerate bone formation and a pronounced filling-in of intracortical cavities with higher intensity for the PTH 5x/w in comparison to PTH e2d rats

    Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration

    Full text link
    The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1" pixel size). XRT has nine X-ray analysis filters with different temperature responses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT

    The "Solar Model Problem" Solved by the Abundance of Neon in Stars of the Local Cosmos

    Full text link
    The interior structure of the Sun can be studied with great accuracy using observations of its oscillations, similar to seismology of the Earth. Precise agreement between helioseismological measurements and predictions of theoretical solar models has been a triumph of modern astrophysics (Bahcall et al. 2005). However, a recent downward revision by 25-35% of the solar abundances of light elements such as C, N, O and Ne (Asplund et al. 2004) has broken this accordance: models adopting the new abundances incorrectly predict the depth of the convection zone, the depth profiles of sound speed and density, and the helium abundance (Basu Antia 2004, Bahcall et al. 2005). The discrepancies are far beyond the uncertainties in either the data or the model predictions (Bahcall et al. 2005b). Here we report on neon abundances relative to oxygen measured in a sample of nearby solar-like stars from their X-ray spectra. They are all very similar and substantially larger than the recently revised solar value. The neon abundance in the Sun is quite poorly determined. If the Ne/O abundance in these stars is adopted for the Sun the models are brought back into agreement with helioseismology measurements (Antia Basu 2005, Bahcall et al. 2005c).Comment: 13 pages, 3 Figure

    First Light Measurements with the XMM-Newton Reflection Grating Spectrometers: Evidence for an Inverse First Ionisation Potential Effect and Anomalous Ne A bundance in the Coronae of HR 1099

    Get PDF
    The RS CVn binary system HR 1099 was extensively observed by the XMM-Newton observatory in February 2000 as its first-light target. A total of 570 ks of exposure time was accumulated with the Reflection Grating Spectrometers (RGS). The integrated X-ray spectrum between 5-35 Angstrom is of unprecedented quality and shows numerous features attributed to transitions of the elements C, N, O, Ne, Mg, Si, S, Fe, and Ni. We perform an in-depth study of the elemental composition of the average corona of this system, and find that the elemental abundances strongly depend on the first ionisation potential (FIP) of the elements. But different from the solar coronal case, we find an inverse FIP effect, i.e., the abundances (relative to oxygen) increase with increasing FIP. Possible scenarios, e.g., selective enrichment due to Ne-rich flare-like events, are discussed.Comment: 5 pages, 4 figures. Accepted by A&A Letters, XMM issu

    Reflection-enhanced gain in traveling-wave parametric amplifiers

    Get PDF
    The operating principle of traveling-wave parametric amplifiers is typically understood in terms of the standard coupled mode theory, which describes the evolution of forward propagating waves without any reflections, i.e., for perfect impedance matching. However, in practice, superconducting microwave amplifiers are unmatched nonlinear finite-length devices, where the reflecting waves undergo complex parametric processes, not described by the standard coupled mode theory. Here, we present an analytical solution for the TWPA gain, which includes the interaction of reflected waves. These reflections result in corrections to the well-known results of the standard coupled mode theory, which are obtained for both three-wave and four-wave mixing processes. Due to these reflections, the gain is enhanced and unwanted nonlinear phase modulations are suppressed. Predictions of the model are experimentally demonstrated on two types of unmatched TWPA, based on coplanar waveguides with a central wire consisting of (i) a high kinetic inductance superconductor, and (ii) an array of 2000 Josephson junctions

    On Solving the Coronal Heating Problem

    Full text link
    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic

    Spatial distribution of far-infrared rotationally excited CH<sup>+</sup> and OH emission lines in the Orion Bar photodissociation region

    Get PDF
    Context. The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500−1000 K) in photodissociation regions (PDRs) with high incident far-ultraviolet (FUV) radiation field. The excitation may also originate in dense gas (>105 cm-3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, which is a tracer of dense and warm gas, and that formation pumping contributes to CH+ excitation.Aims. Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar to establish their physical origin and main formation and excitation mechanisms.Methods. We present spatially sampled maps of the CH+ J = 3–2 transition at 119.8 μm and the OH Λ doublet at 84 μm in the Orion Bar over an area of 110″× 110″ with Herschel/PACS. We compare the spatial distribution of these molecules with those of their chemical precursors, C+ , O and H2, and tracers of warm and dense gas (high- J CO). We assess the spatial variation of the CH+ J = 2–1 velocity-resolved line profile at 1669 GHz with Herschel/HIFI spectrometer observations.Results. The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 μm emission coincides with a bright young object, proplyd 244–440, which shows that OH can be an excellent tracer of UV-irradiated dense gas.Conclusions. The spatial distribution of CH+ and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH+ J = 3–2 excitation processes. The excitation of the OH Λ doublet at 84 μm is mainly sensitive to the temperature and density
    corecore