8 research outputs found

    A Survey on Semi-, Self- and Unsupervised Learning for Image Classification

    Get PDF
    While deep learning strategies achieve outstanding results in computer vision tasks, one issue remains: The current strategies rely heavily on a huge amount of labeled data. In many real-world problems, it is not feasible to create such an amount of labeled training data. Therefore, it is common to incorporate unlabeled data into the training process to reach equal results with fewer labels. Due to a lot of concurrent research, it is difficult to keep track of recent developments. In this survey, we provide an overview of often used ideas and methods in image classification with fewer labels. We compare 34 methods in detail based on their performance and their commonly used ideas rather than a fine-grained taxonomy. In our analysis, we identify three major trends that lead to future research opportunities. 1. State-of-the-art methods are scalable to real-world applications in theory but issues like class imbalance, robustness, or fuzzy labels are not considered. 2. The degree of supervision which is needed to achieve comparable results to the usage of all labels is decreasing and therefore methods need to be extended to settings with a variable number of classes. 3. All methods share some common ideas but we identify clusters of methods that do not share many ideas. We show that combining ideas from different clusters can lead to better performance

    Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study

    Full text link
    Osteoporosis is a common disease that increases fracture risk. Hip fractures, especially in elderly people, lead to increased morbidity, decreased quality of life and increased mortality. Being a silent disease before fracture, osteoporosis often remains undiagnosed and untreated. Areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry (DXA) is the gold-standard method for osteoporosis diagnosis and hence also for future fracture prediction (prognostic). However, the required special equipment is not broadly available everywhere, in particular not to patients in developing countries. We propose a deep learning classification model (FORM) that can directly predict hip fracture risk from either plain radiographs (X-ray) or 2D projection images of computed tomography (CT) data. Our method is fully automated and therefore well suited for opportunistic screening settings, identifying high risk patients in a broader population without additional screening. FORM was trained and evaluated on X-rays and CT projections from the Osteoporosis in Men (MrOS) study. 3108 X-rays (89 incident hip fractures) or 2150 CTs (80 incident hip fractures) with a 80/20 split were used. We show that FORM can correctly predict the 10-year hip fracture risk with a validation AUC of 81.44 +- 3.11% / 81.04 +- 5.54% (mean +- STD) including additional information like age, BMI, fall history and health background across a 5-fold cross validation on the X-ray and CT cohort, respectively. Our approach significantly (p < 0.01) outperforms previous methods like Cox Proportional-Hazards Model and \frax with 70.19 +- 6.58 and 74.72 +- 7.21 respectively on the X-ray cohort. Our model outperform on both cohorts hip aBMD based predictions. We are confident that FORM can contribute on improving osteoporosis diagnosis at an early stage.Comment: Accepted at MICCAI 2022 Workshop (PRIME

    S2C2 -- An orthogonal method for Semi-Supervised Learning on ambiguous labels

    Full text link
    Semi-Supervised Learning (SSL) can decrease the required amount of labeled image data and thus the cost for deep learning. Most SSL methods assume a clear distinction between classes, but class boundaries are often ambiguous in real-world datasets due to intra- or interobserver variability. This ambiguity of annotations must be addressed as it will otherwise limit the performance of SSL and deep learning in general due to inconsistent label information. We propose Semi-Supervised Classification & Clustering (S2C2) which can extend many deep SSL algorithms. S2C2 automatically estimates the ambiguity of an image and applies the respective SSL algorithm as a classification to certainly labeled data while partitioning the ambiguous data into clusters of visual similar images. We show that S2C2 results in a 7.6% better F1-score for classifications and 7.9% lower inner distance of clusters on average across multiple SSL algorithms and datasets. Moreover, the output of S2C2 can be used to decrease the ambiguity of labels with the help of human experts. Overall, a combination of Semi-Supervised Learning with our method S2C2 leads to better handling of ambiguous labels and thus real-world datasets

    Fuzzy Overclustering: Semi-Supervised Classification of Fuzzy Labels with Overclustering and Inverse Cross-Entropy

    No full text
    Deep learning has been successfully applied to many classification problems including underwater challenges. However, a long-standing issue with deep learning is the need for large and consistently labeled datasets. Although current approaches in semi-supervised learning can decrease the required amount of annotated data by a factor of 10 or even more, this line of research still uses distinct classes. For underwater classification, and uncurated real-world datasets in general, clean class boundaries can often not be given due to a limited information content in the images and transitional stages of the depicted objects. This leads to different experts having different opinions and thus producing fuzzy labels which could also be considered ambiguous or divergent. We propose a novel framework for handling semi-supervised classifications of such fuzzy labels. It is based on the idea of overclustering to detect substructures in these fuzzy labels. We propose a novel loss to improve the overclustering capability of our framework and show the benefit of overclustering for fuzzy labels. We show that our framework is superior to previous state-of-the-art semi-supervised methods when applied to real-world plankton data with fuzzy labels. Moreover, we acquire 5 to 10% more consistent predictions of substructures

    Fuzzy Overclustering: Semi-Supervised Classification of Fuzzy Labels with Overclustering and Inverse Cross-Entropy

    Get PDF
    International audienceDeep learning has been successfully applied to many classification problems including underwater challenges. However, a long-standing issue with deep learning is the need for large and consistently labeled datasets. Although current approaches in semi-supervised learning can decrease the required amount of annotated data by a factor of 10 or even more, this line of research still uses distinct classes. For underwater classification, and uncurated real-world datasets in general, clean class boundaries can often not be given due to a limited information content in the images and transitional stages of the depicted objects. This leads to different experts having different opinions and thus producing fuzzy labels which could also be considered ambiguous or divergent. We propose a novel framework for handling semi-supervised classifications of such fuzzy labels. It is based on the idea of overclustering to detect substructures in these fuzzy labels. We propose a novel loss to improve the overclustering capability of our framework and show the benefit of overclustering for fuzzy labels. We show that our framework is superior to previous state-of-the-art semi-supervised methods when applied to real-world plankton data with fuzzy labels. Moreover, we acquire 5 to 10% more consistent predictions of substructures

    A Data-Centric Approach for Improving Ambiguous Labels with Combined Semi-supervised Classification and Clustering

    No full text
    Consistently high data quality is essential for the development of novel loss functions and architectures in the field of deep learning. The existence of such data and labels is usually presumed, while acquiring high-quality datasets is still a major issue in many cases. Subjective annotations by annotators often lead to ambiguous labels in real-world datasets. We propose a data-centric approach to relabel such ambiguous labels instead of implementing the handling of this issue in a neural network. A hard classification is by definition not enough to capture the real-world ambiguity of the data. Therefore, we propose our method “Data-Centric Classification & Clustering (DC3)” which combines semi-supervised classification and clustering. It automatically estimates the ambiguity of an image and performs a classification or clustering depending on that ambiguity. DC3 is general in nature so that it can be used in addition to many Semi-Supervised Learning (SSL) algorithms. On average, our approach yields a 7.6% better F1-Score for classifications and a 7.9% lower inner distance of clusters across multiple evaluated SSL algorithms and datasets. Most importantly, we give a proof-of-concept that the classifications and clusterings from DC3 are beneficial as proposals for the manual refinement of such ambiguous labels. Overall, a combination of SSL with our method DC3 can lead to better handling of ambiguous labels during the annotation process. (Source code is available at https://github.com/Emprime/dc3)

    Is one annotation enough? A data-centric image classification benchmark for noisy and ambiguous label estimation

    No full text
    High-quality data is necessary for modern machine learning. However, the acquisition of such data is difficult due to noisy and ambiguous annotations of humans. The aggregation of such annotations to determine the label of an image leads to a lower data quality. We propose a data-centric image classification benchmark with ten real-world datasets and multiple annotations per image to allow researchers to investigate and quantify the impact of such data quality issues. With the benchmark we can study the impact of annotation costs and (semi-)supervised methods on the data quality for image classification by applying a novel methodology to a range of different algorithms and diverse datasets. Our benchmark uses a two-phase approach via a data label improvement method in the first phase and a fixed evaluation model in the second phase. Thereby, we give a measure for the relation between the input labeling effort and the performance of (semi-)supervised algorithms to enable a deeper insight into how labels should be created for effective model training. Across thousands of experiments, we show that one annotation is not enough and that the inclusion of multiple annotations allows for a better approximation of the real underlying class distribution. We identify that hard labels can not capture the ambiguity of the data and this might lead to the common issue of overconfident models. Based on the presented datasets, benchmarked methods, and analysis, we create multiple research opportunities for the future directed at the improvement of label noise estimation approaches, data annotation schemes, realistic (semi-)supervised learning, or more reliable image collection
    corecore