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ABSTRACT While deep learning strategies achieve outstanding results in computer vision tasks, one issue
remains: The current strategies rely heavily on a huge amount of labeled data. In many real-world problems,
it is not feasible to create such an amount of labeled training data. Therefore, it is common to incorporate
unlabeled data into the training process to reach equal results with fewer labels. Due to a lot of concurrent
research, it is difficult to keep track of recent developments. In this survey, we provide an overview of often
used ideas and methods in image classification with fewer labels. We compare 34 methods in detail based
on their performance and their commonly used ideas rather than a fine-grained taxonomy. In our analysis,
we identify three major trends that lead to future research opportunities. 1. State-of-the-art methods are
scalable to real-world applications in theory but issues like class imbalance, robustness, or fuzzy labels are
not considered. 2. The degree of supervision which is needed to achieve comparable results to the usage
of all labels is decreasing and therefore methods need to be extended to settings with a variable number of
classes. 3. All methods share some common ideas but we identify clusters of methods that do not share many
ideas. We show that combining ideas from different clusters can lead to better performance.

INDEX TERMS Semi-supervised, self-supervised, unsupervised, image classification, deep learning,
survey.

I. INTRODUCTION
Deep learning strategies achieve outstanding successes in
computer vision tasks. They reach the best performance in
a diverse range of tasks such as image classification [1]–[3],
object detection [4], [5] or semantic segmentation [6], [7].

The quality of a deep neural network is strongly influ-
enced by the number of labeled/supervised images [8]. Ima-
geNet [1] is a huge labeled dataset with over one million
images which allows the training of networks with impres-
sive performance. Recent research shows that even larger
datasets than ImageNet can improve these results [9]. How-
ever, in many real-world applications it is not possible to
create labeled datasets with millions of images. A common
strategy for dealing with this problem is transfer learning.
This strategy improves results even on small and specialized
datasets like medical imaging [10]. This might be a practical
workaround for some applications but the fundamental issue
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remains: Unlike humans, supervised learning needs enor-
mous amounts of labeled data.

For a given problem we often have access to a large dataset
of unlabeled data. How this unsupervised data could be used
for neural networks has been of research interest for many
years [11]. Xie et al. were among the first in 2016 to investi-
gate unsupervised deep learning image clustering strategies
to leverage this data [12]. Since then, the usage of unla-
beled data has been researched in numerous ways and has
created research fields like unsupervised, semi-supervised,
self-supervised, weakly-supervised, or metric learning [13].
Generally speaking, unsupervised learning uses no labeled
data, semi-supervised learning uses unlabeled and labeled
while self-supervised learning generates labeled data on
its own. Other research directions are even more different
because weakly-supervised learning uses only partial infor-
mation about the label and metric learning aims at learning a
good distance metric. The idea that unifies these approaches
is that using unlabeled data is beneficial during the training
process (see Figure 1 for an illustration). It either makes the
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FIGURE 1. This image illustrates and simplifies the benefit of using
unlabeled data during deep learning training. The red and dark blue
circles represent labeled data points of different classes. The light grey
circles represent unlabeled data points. If we have only a small number
of labeled samples available we can only make assumptions (dotted line)
over the underlying true distribution (solid line). This true distribution can
only be determined if we also consider the unlabeled data points and
clarify the decision boundary.

training with fewer labels more robust or in some rare cases
even surpasses the supervised cases [14].

Due to this benefit, many researchers and companies work
in the field of semi-, self-, and unsupervised learning. The
main goal is to close the gap between semi-supervised and
supervised learning or even surpass these results. Considering
presented methods like [15], [16] we believe that research is
at the breaking point of achieving this goal. Hence, there is a
lot of research ongoing in this field. This survey provides an
overview to keep track of the major and recent developments
in semi-, self-, and unsupervised learning.

Most investigated research topics share a variety of com-
mon ideas while differing in goal, application contexts, and
implementation details. This survey gives an overview of this
wide range of research topics. The focus of this survey is
on describing the similarities and differences between the
methods.

Whereas we look at a broad range of learning strategies,
we compare these methods only based on the image classifi-
cation task. The addressed audience of this survey consists of
deep learning researchers or interested people with compara-
ble preliminary knowledge who want to keep track of recent
developments in the field of semi-, self- and unsupervised
learning.

A. RELATED WORK
In this subsection, we give a quick overview of previous
works and reference topics we will not address further to
maintain the focus of this survey.

The research of semi- and unsupervised techniques in com-
puter vision has a long history. A variety of research, sur-
veys, and books has been published on this topic [17]–[21].

Unsupervised cluster algorithms were researched before the
breakthrough of deep learning and are still widely used [22].
There are already extensive surveys that describe unsuper-
vised and semi-supervised strategies without deep learn-
ing [18], [23]. We will focus only on techniques including
deep neural networks.

Many newer surveys focus only on self-, semi- or unsuper-
vised learning [19], [20], [24]. Min et al. wrote an overview
of unsupervised deep learning strategies [24]. They pre-
sented the beginning in this field of research from a net-
work architecture perspective. The authors looked at a broad
range of architectures. We focus on only one architecture
which Min et al. refer to as ‘‘Clustering deep neural network
(CDNN)-based deep clustering’’ [24]. Even though the work
was published in 2018, it already misses the recent and major
developments in deep learning of the last years. We look at
these more recent developments and show the connections to
other research fields that Min et al. did not include.

Van Engelen and Hoos give a broad overview of general
and recent semi-supervised methods [20]. They cover some
recent developments but deep learning strategies such as [14],
[25]–[28] are not covered. Furthermore, the authors do not
explicitly compare the presented methods based on their
structure or performance.

Jing and Tian concentrated their survey on recent develop-
ments in self-supervised learning [19]. Like us, the authors
provide a performance comparison and a taxonomy. Their
taxonomy distinguishes between different kinds of pretext
tasks. We look at pretext tasks as one common idea and
compare the methods based on these underlying ideas. Jing
and Tian look at different tasks apart from classification but
do not include semi- and unsupervised methods without a
pretext task.

Qi and Luo are one of the few who look at self-, semi-
and unsupervised learning in one survey [29]. However, they
look at the different learning strategies separately and give
comparisons only inside the respective learning strategy. We
show that bridging these gaps leads to new insights, improved
performance, and future research approaches.

Some surveys focus not on the general overviews about
semi-, self-, and unsupervised learning but special details. In
their survey, Cheplygina et al. present a variety of methods
in the context of medical image analysis [30]. They include
deep learning and oldermachine learning approaches but look
at different strategies from a medical perspective. Mey and
Loog focused on the underlying theoretical assumptions in
semi-supervised learning [31]. We keep our survey limited to
general image classification tasks and focus on their practical
application.

In this survey, we will focus on deep learning approaches
for image classification. We will investigate the different
learning strategies with a spotlight on loss functions. We
concentrate on recent methods because older one are already
adequately addressed in previous literature [17]–[21]. Keep-
ing the above-mentioned limitations in mind, the topic of
self-, semi-, and unsupervised learning still includes a broad
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FIGURE 2. Overview of the structure of this survey – The learning strategies unsupervised, semi-supervised and supervised are commonly used in the
literature. Because semi-supervised learning is incorporating many methods we defined training strategies which subdivides semi-supervised learning.
For details about the training and learning strategies (including self-supervised learning) see subsection II-A. Each method belongs to one training
strategy and uses several common ideas. A common idea can be a concept such as a pretext task or a loss such as cross-entropy. The definition of
methods and common ideas is given in section II. Details about the common ideas are defined in subsection II-B. All methods in this survey are shortly
described and categorized in section III. The methods are compared with each other based on this information concerning their used common ideas and
their performance in subsection IV-C. The results of the comparisons and three resulting trends are discussed in subsection IV-D.

range of research fields. We have to exclude some related
topics from this survey to keep the focus of this work for
example because other research have a different aim or are
evaluated on different datasets. Therefore, topics like met-
ric learning [13] and meta learning such as [32] will be
excluded. More specific networks like general adversarial
networks [33] and graph networks such as [34] will be
excluded. Also, other applications like pose estimation [35]
and segmentation [36] or other image sources like videos or
sketches [37] are excluded. Topics like few-shot or zero-shot
learning methods such as [38] are excluded in this survey.
However, we will see in subsection IV-D that topics like
few-shot learning and semi-supervised can learn from each
other in the future like in [39].

B. OUTLINE
The rest of the paper is structured in the following way.
We define and explain the terms which are used in this
survey such as method, training strategy and common idea
in section II. A visual representation of the terms and
their dependencies can be seen before the analysis part in
Figure 2. All methods are presented with a short description,
their training strategy and common idea in section III. In
section IV, we compare the methods based their used ideas
and their performance across four common image classifica-
tion datasets. This section also includes a description of the
datasets and evaluationmetrics. Finally, we discuss the results
of the comparisons in subsection IV-D and identify three

trends and research opportunities. In Figure 2, a complete
overview of the structure of this survey can be seen.

II. UNDERLYING CONCEPTS
Throughout this survey, we use the terms training strategy,
common idea, andmethod in a specificmeaning. The training
strategy is the general type/approach for using the unsuper-
vised data during training. The training strategies are similar
to the terms semi-supervised, self-supervised, or unsuper-
vised learning but provide a definition for corner cases that
the other terms do not. We will explain the differences and
similarities in detail in subsection II-A. The papers we discuss
in detail in this survey propose different elements like an
algorithm, a general idea, or an extension of previous work.
To be consistent in this survey, we call the main algorithm,
idea, or extension in each paper a method. All methods are
briefly described in section III. A method follows a train-
ing strategy and is based on several common ideas. We use
the term common idea, or in short idea, for concepts and
approaches that are shared between different methods. We
roughly sort the methods based on their training strategy but
compare them in detail based on the used common ideas. See
subsection II-B for further information about common ideas.

In the rest of this chapter, we will use a shared definition
for the following variables. For an arbitrary set of images
X we define Xl and Xu with X = Xl∪̇Xu as the labeled
and unlabeled images, respectively. For an image x ∈ Xl
the corresponding label is defined as zx ∈ Z . An image
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FIGURE 3. Illustrations of supervised learning (a) and the three presented reduced training strategies (b-d) - The red and dark blue circles represent
labeled data points of different classes. The light grey circles represent unlabeled data points. The black lines define the underlying decision boundaries
between the classes. The striped circles represent data points that do not use the label information in the first stage and can access this information in
a second stage. For more details on stages and the different learning strategies see subsection II-A.

x ∈ Xu has no label otherwise it would belong to Xl . For
the distinction between Xu and Xl , only the usage of the
label information during training is important. For example,
an image x ∈ X might have a label that can be used during
evaluation but as long as the label is not used during training
we define x ∈ Xu. The learning strategy LSX for a dataset
X is either unsupervised (X = Xu), supervised (X = Xl)
or semi-supervised (Xu ∩ Xl 6= ∅). During different phases
of the training, different image datasets X1,X2, . . .Xn with
n ∈ N could be used. Two consecutive datasets Xi and Xi+1
with i ≤ n and i ∈ N are different as long as different images
(Xi 6= Xi+1) or different labels (XLi 6= XLi+1) are used. The
learning strategy LSi up to the dataset Xi during the training
is calculated based on Xu = ∪ij=1Xuj and Xl = ∪ij=1Xlj .
Consecutive phases of the training are grouped into stages.
The stage changes during consecutive datasets Xi and Xi+1
iff the learning strategy is different (LSXi 6= LSXi+1) and the
overall learning strategy changes (LSi 6= LSi+1). Due to this
definition, only two stages can occur during training and the
seven possible combinations are visualized in Figure 4. For
more details see subsection II-A. Let C be the number of
classes for the labels Z . For a given neural network f and
input x ∈ X the output of the neural network is f (x). For the
below-defined formulations, f is an arbitrary network with
arbitrary weights and parameters.

A. TRAINING STRATEGIES
Terms like semi-supervised, self-supervised, and unsuper-
vised learning are often used in literature but have over-
lapping definitions for certain methods. We will summarize
the general understanding and definition of these terms and
highlight borderline cases that are difficult to classify. Due
to these borderline cases, we will define a new taxonomy
based on the stages during training for a precise distinction
of the methods. In subsection IV-C, we will see that this tax-
onomy leads to a clear clustering of themethods regarding the
common ideas which further justifies this taxonomy. A visual
comparison between the learning-strategies semi-supervised
and unsupervised learning and the training strategies can be
found in Figure 4.

Unsupervised learning describes the training without any
labels. However, the goal can be a clustering (e.g. [14],
[27]) or good representation (e.g. [25], [40]) of the data.
Somemethods combine several unsupervised steps to achieve
firstly a good representation and then a clustering (e.g. [41]).
In most cases, this unsupervised training is achieved by
generating its own labels, and therefore the methods are
called self-supervised. A counterexample for an unsupervised
method without self-supervision would be k-means [22].
Often, self-supervision is achieved on a pretext task on the
same or a different dataset and then the pretrained network
is fine-tuned on a downstream task [19]. Many methods that
follow this paradigm say their method is a form of represen-
tation learning [25], [40], [42]–[44]. In this survey, we focus
on image classification, and therefore most self-supervised or
representation learning methods need to fine-tune on labeled
data. The combination of pretraining and fine-tuning can
neither be called unsupervised nor self-supervised as exter-
nal labeled information are used. Semi-supervised learning
describes methods that use labeled and unlabeled data. How-
ever, semi-supervised methods like [16], [26], [45]–[49] use
the labeled and unlabeled data from the beginning in com-
parison to representation learning methods like [25], [40],
[42]–[44] which use them in different stages of their training.
Some methods combine ideas from self-supervised learning,
semi-supervised learning and unsupervised learning [15],
[27] and are even more difficult to classify.

From the above explanation, we see that most methods
are either unsupervised or semi-supervised in the context
of image classification. The usage of labeled and unlabeled
data in semi-supervised methods varies and a clear distinc-
tion in the common taxonomy is not obvious. Nevertheless,
we need to structure the methods in some way to keep an
overview, allow comparisons and acknowledge the difference
of research foci. We decided against providing a fine-grained
taxonomy as in previous literature [29] because we believe
future researchwill come upwith new combinations that were
not thought of before. We separate the methods only based on
a rough distinction when the labeled or unlabeled data is used
during the training. For detailed comparisons, we distinct the
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methods based on their common ideas that are defined above
and described in detail in subsection II-B. We call all semi-,
self-, and unsupervised (learning) strategies together reduced
supervised (learning) strategies.
We defined stages above (see section II) as the differ-

ent phases/time intervals during training when the differ-
ent learning strategies supervised (X = Xl), unsupervised
(X = Xu) or semi-supervised (Xu ∩ Xl 6= ∅) are used. For
example, a method that uses a self-supervised pretraining on
Xu and then fine-tunes on the same images with labels has
two stages. A method that uses different algorithms, losses,
or datasets during the training but only uses unsupervised
data Xu has one stage (e.g. [41]). A method which uses Xu
and Xl during the complete training has one stage (e.g. [26]).
Based on the definition of stages during training, we clas-
sify reduced supervised methods into the training strate-
gies: One-Stage-Semi-Supervised, One-Stage-Unsupervised,
and Multi-Stage-Semi-Supervised. An overview of the stage
combinations and the corresponding training strategy is given
in Figure 4. As we concentrate on reduced supervised learn-
ing in this survey, we will not discuss any methods which are
completely supervised.

Due to the above definition of stages a fifth combination of
data usage between the stages exists. This combination would
use only labeled data in the first stage and unlabeled data in
the second stage. In the rest of the survey, we will exclude
this training strategy for the following reasons. The case that
a stage of complete supervision is followed by a stage of
partial or no supervision is an unusual training strategy. Due
to this unusual usage, we only know of weight initialization
followed by other reduced supervised training steps where
this combination could occur. We see the initialization of a
network with pretrained weights from a supervised training
on a different dataset (e.g. Imagenet [1]) as an architectural
decision. It is not part of the reduced supervised training
process because it is used mainly as a more sophisticated
weight initialization. If we exclude weight initialization for
this reason, we know of no method which belongs to this
stage.

In the following paragraphs, we will describe all other
training strategies in detail and they are illustrated in Figure 3.

1) SUPERVISED LEARNING
Supervised learning is the most common strategy in image
classification with deep neural networks. These methods only
use labeled data Xl and its corresponding labels Z . The goal is
to minimize a loss function between the output of the network
f (x) and the expected label zx ∈ Z for all x ∈ Xl .

2) ONE-STAGE-SEMI-SUPERVISED TRAINING
All methods which follow the one-stage-semi-supervised
training strategy are trained in one stage with the usage of
Xl,Xu, and Z . The main difference to all supervised learning
strategies is the usage of the additional unlabeled data Xu.
A common way to integrate the unlabeled data is to add one
or more unsupervised losses to the supervised loss.

FIGURE 4. Illustration of the different training strategies – Each row
stands for a different combination of data usage during the first
and second stage (defined in section II). The first column states the
common learning strategy name in the literature for this usage whereas
the last column states the training strategy name used in this survey.
The second column represents the used data overall. The third and fourth
column represent the used data in stage one or two. The blue and grey
(half-) circles represent the usage of the labeled data Xl and the
unlabeled data Xu respectively in each stage or overall. A minus means
that no further stage is used. The dashed half circle in the last row
represents that this dashed part of the data can be used.

3) ONE-STAGE-UNSUPERVISED TRAINING
All methods which follow the one-stage-unsupervised train-
ing strategy are trained in one stage with the usage of only
the unlabeled samples Xu. Therefore, many authors in this
training strategy call their method unsupervised. A variety of
loss functions exist for unsupervised learning [12], [14], [50].
In most cases, the problem is rephrased in such a way that all
inputs for the loss can be generated, e.g. reconstruction loss
in autoencoders [12]. Due to this self-supervision, some call
also these methods self-supervised. We want to point out one
major difference to many self-supervised methods follow-
ing the multi-stage-semi-supervised training strategy below.
One-Stage-Unsupervised methods give image classifications
without any further usage of labeled data.

4) MULTI-STAGE-SEMI-SUPERVISED TRAINING
All methods which follow the multi-stage-semi-supervised
training strategy are trained in two stages with the usage of
Xu in the first stage and Xl and maybe Xu in the second stage.
Many methods that are called self-supervised by their authors
fall into this strategy. Commonly a pretext task is used to learn
representations on unlabeled data Xu. In the second stage,
these representations are fine-tuned to image classification
on Xl . An important difference to a one-stage method is that
these methods return useable classifications only after an
additional training stage.

B. COMMON IDEAS
Different common ideas are used to train models in semi-,
self-, and unsupervised learning. In this section, we present a
selection of these ideas that are used across multiple methods
in the literature.

It is important to notice that our usage of common ideas is
fuzzy and incomplete by definition. A common idea should
not be an identical implementation or approximation but
the underlying motivation. This fuzziness is needed for two
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reasons. Firstly, a comparison would not be possible due
to so many small differences in the exact implementations.
Secondly, they allow us to abstract some core elements of
a method and therefore similarities can be detected. Also,
not all details, concepts, and motivations are captured by
common ideas. We will limit ourselves to the common ideas
described below since we believe they are enough to char-
acterize all recent methods. At the same time, we know that
these ideas need to be extended in the future as new common
ideas will arise, old ones will disappear, and focus will shift
to other ideas. In contrast to detailed taxonomies, these new
ideas can easily be integrated as new tags.

We sorted the ideas in alphabetical order and distinguish
loss functions and general concepts. Since ideas might refer-
ence each other, you may have to jump to the corresponding
entry if you would like to know more.

LOSS FUNCTIONS
CROSS-ENTROPY (CE)
A common loss function for image classification is
cross-entropy [51]. It is commonly used tomeasure the differ-
ence between f (x) and the corresponding label zx for a given
x ∈ Xl . The loss is defined in Equation 1 and the goal is to
minimize the difference.

CE(zx , f (x)) = −
C∑
c=1

P(c|zx)log(P(c|f (x)))

= −

C∑
c=1

P(c|zx)log(P(c|zx))

−

C∑
c=1

P(c|zx)log(
P(c|f (x))
P(c|zx)

)

= H (P(·|zx))

+KL(P(·|zx) || P(·|f (x)) (1)

P is a probability distribution over all classes and is approx-
imated with the (softmax-)output of the neural network f (x)
or the given label zx . H is the entropy of a probability dis-
tribution and KL is the Kullback-Leibler divergence. It is
important to note that cross-entropy is the sum of entropy over
zx and a Kullback-Leibler divergence between f (x) and zx .
In general, the entropy H (P(·|zx)) is zero due to the one-hot
encoded label zx .

The loss function CE could also be used with a different
probability distribution than P based on the ground-truth
label. These distributions could be for example be based on
Pseudo-Labels or other targets in a self-supervised pretext
task. We abbreviate the used common idea with CE* if not
the ground-truth labels are used to highlight this specialty.

CONTRASTIVE LOSS (CL)
A contrastive loss tries to distinguish positive and negative
pairs. The positive pair could be different views of the same
image and the negative pairs could be all other pairwise
combinations in a batch [25]. Hadsell et al. proposed to

learn representations based on contrasting [53]. In recent
years, the idea has been extended by self-supervised visual
representation learningmethods [25], [54]–[57]. Examples of
contrastive loss functions are NT-Xent [25] and InfoNCE [55]
and both are based on Cross-Entropy. The loss NT-Xent is
computed across all positive pairs (xi, xj) in a fixed subset
of X with N elements e.g. a batch during training. The def-
inition of the loss for a positive pair is given in Equation 2.
The similarity sim between the outputs is measured with a
normalized dot product, τ is a temperature parameter and the
batch consists of N image pairs.

lxi,xj = −log
exp(sim(f (xi), f (xj))/τ )∑2N

k=1 1k 6=iexp(sim(f (xi), f (xk ))/τ )
(2)

Chen and Li generalize the loss NT-Xent into a broader
family of loss functions with an alignment and a distribution
part [58]. The alignment part encourages representations
of positive pairs to be similar whereas the distribution
part ‘‘encourages representations to match a prior distri-
bution’’ [58]. The loss InfoNCE is motivated like other
contrastive losses by maximizing the agreement / mutual
information between different views. Van der Oord et al.
showed that InfoNCE is a lower bound for the mutual infor-
mation between the views [55]. More details and different
bounds for other losses can be found in [59]. However,
Tschannen et al. show evidence that these lower bounds
might not be the main reason for the successes of these
methods [60]. Due to this fact, we count losses like InfoNCE
as a mixture of the common ideas contrastive loss and mutual
information.

ENTROPY MINIMIZATION (EM)
Grandvalet and Bengio noticed that the distributions of pre-
dictions in semi-supervised learning tend to be distributed
over many or all classes instead of being sharp for one
or few classes [61]. They proposed to sharpen the output
predictions or in other words to force the network to make
more confident predictions by minimizing entropy [61]. They
minimized the entropy H (P(·|f (x))) for a probability distri-
bution (P(·|f (x)) based on a certain neural output f (x) and
an image x ∈ X . This minimization leads to sharper /
more confident predictions. If this loss is used as the only
loss the network/predictions would degenerate to a trivial
minimization.

KULLBACK-LEIBLER DIVERGENCE (KL)
The Kullback-Leiber divergence is also commonly used in
image classification since it can be interpreted as a part
of cross-entropy. In general, KL measures the difference
between two given distributions [62] and is therefore often
used to define an auxiliary loss between the output f (x)
for an image x ∈ X and a given secondary discrete prob-
ability distribution Q over the classes C . The definition
is given in Equation 3. The second distribution could be
another network output distribution, a prior known distribu-
tion, or a ground-truth distribution depending on the goal of
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FIGURE 5. Illustration of four selected common ideas – (a) The blue and red circles represent two different classes. The line is the decision boundary
between these classes. The ε spheres around the circles define the area of possible transformations. The arrows represent the adversarial change vector
r which pushes the decision boundary away from any data point. (b) The images of a cat and a dog are combined with a parametrized blending. The
labels are also combined with the same parameterization. The shown images are taken from the dataset STL-10 [52] (c) Each circle represents a data
point and the coloring of the circle the ground-truth label. In this example, the images in the middle have fuzzy ground-truth labels. Classification can
only draw one arbitrary decision boundary (dashed line) in the datapoints whereas overclustering can create multiple subregions. This method could also
be applied to outliers rather than fuzzy labels. (d) This loop represents one version of Pseudo-Labeling. A neural network predicts an output distribution.
This distribution is cast into a hard Pseudo-Label which is then used for further training the neural network.

the minimization.

KL(Q || P(·|f (x)) = −
C∑
c=1

Q(c)log(
P(c|f (x))
Q(c)

) (3)

MEAN SQUARED ERROR (MSE)
MSE measures the Euclidean distance between two vectors
e.g. two neural network outputs f (x), f (y) for the images
x, y ∈ X . In contrast to the loss CE or KL, MSE is not
a probability measure and therefore the vectors can be in
an arbitrary Euclidean feature space (see Equation 4). The
minimization of the MSE will pull the two vectors or as
in the example the network outputs together. Similar to the
minimization of entropy, this would lead to a degeneration of
the network if this loss is used as the only loss on the network
outputs.

MSE(f (x), f (y)) = ||f (x)− f (y)||22 (4)

MUTUAL INFORMATION (MI)
MI is defined for two probability distributions P,Q as the
Kullback Leiber (KL) divergence between the joint distri-
bution and the marginal distributions [63]. In many reduced
supervised methods, the goal is to maximize the mutual infor-
mation between the distributions. These distributions could
be based on the input, the output, or an intermediate step of
a neural network. In most cases, the conditional distribution
between P and Q and therefore the joint distribution is not
known. For example, we could use the outputs of a neural
network f (x), f (y) for two augmented views x, y of the same
image as the distributions P,Q. In general, the distributions
could be dependent as x, y could be identical or very similar
and the distributions could be independent if x, y they are
crops of distinct classes e.g. the background sky and the fore-
ground object. Therefore, the mutual information needs to
be approximated. The used approximation varies depending

on the method and the definition of the distributions P,Q.
For further theoretical insights and several approximations
see [59], [64].

We show the definition of the mutual information between
two network outputs f (x), f (y) for images x, y ∈ X as
an example in Equation 5. This equation also shows an
alternative representation of mutual information: the sep-
aration in entropy H (P(·|f (x))) and conditional entropy
H (P(·|f (x)) | P(·|f (y))). Ji et al. argue that this representa-
tion illustrates the benefits of using MI over CE in unsu-
pervised cases [14]. A degeneration is avoided because MI
balances the effects of maximizing the entropy with a uni-
form distribution for P(·|f (x)) and minimizing the condi-
tional entropy by equalizing P(·|f (x)) and P(·|f (y)). Both
cases lead to a degeneration of the neural network on their
own.

I (P(·|f (x),P(·|f (y))

= KL(P(·|f (x), f (y)) || P(·|f (x) ∗ P(·|f (y))))

=

C∑
c=1,c′=1

P(c, c′|f (x), f (y))

log(
P(c, c′|f (x), f (y))

P(c|f (x) ∗ P(c′|f (y)))
)

= H (P(·|f (x))+ H (P(·|f (x)) | P(·|f (y))) (5)

VIRTUAL ADVERSARIAL TRAINING (VAT)
VAT [65] tries to make predictions invariant to small transfor-
mations by minimizing the distance between an image and
a transformed version of the image. Miyato et al. showed
how a transformation can be chosen and approximated in an
adversarial way. This adversarial transformation maximizes
the distance between an image and a transformed version of
it over all possible transformations. The loss is defined in
Equation 6 with an image x ∈ X and the output of a given
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FIGURE 6. Illustrations of 8 selected pretext tasks – (a) Example image for the pretext task (b) Negative/different example image in the dataset or batch
(c) The Jigsaw pretext task consists of solving a simple Jigsaw puzzle generated from the main image. (d) Jigsaw++ augments the Jigsaw puzzle by adding
in parts of a different image. (e) In the exemplar pretext task, the distributions of a weakly augmented image (upper right corner) and several strongly
augmented images should be aligned. (f) An image is rotated around a fixed set of rotations e.g. 0, 90, 180, and 270 degrees. The network should predict
the rotation which has been applied. (g) A central patch and an adjacent patch from the same image are given. The task is to predict one of the 8 possible
relative positions of the second patch to the first one. In the example, the correct answer is upper center. (h) The network receives a list of pairs and
should predict the positive pairs. In this example, a positive pair consists of augmented views from the same image. Some illustrations are inspired
by [40], [42], [44].

neural network f (x).

VAT (f (x)) = D(P(·|f (x),P(·|f (x + radv))

radv = argmax
r;||r||≤ε

D(P(·|f (x),P(·|f (x + r)) (6)

P is the probability distribution over the outputs of the neural
network and D is a non-negative function that measures the
distance. As illustrated in Figure 5a r is a vector and ε the
maximum length of this vector. Two examples of used dis-
tance measures are cross-entropy [65] and Kullback-Leiber
divergence [15].

CONCEPTS
MIXUP (MU)
Mixup creates convex combinations of images by blending
them into each other. An illustration of the concept is given
in Figure 5b. The prediction of the convex combination of the
corresponding labels turned out to be beneficial because the
network needs to create consistent predictions for intermedi-
ate interpolations of the image. This approach has been bene-
ficial for supervised learning in general [66] and is therefore
also used in several semi-supervised learning algorithms [26],
[45], [46].

OVERCLUSTERING (OC)
Normally, if we have k classes in the supervised case we
also use k clusters in the unsupervised case. Research showed
that it can be beneficial to use more clusters than actual
classes k exist [14], [27], [67]. We call this idea overclus-
tering. Overclustering can be beneficial in semi-supervised
or unsupervised cases due to the effect that neural net-
works can decide ’on their own’ how to split the data.
This separation can be helpful in noisy/fuzzy data or with
intermediate classes that were sorted into adjacent classes
randomly [27]. An illustration of this idea is presented
in Figure 5c

PRETEXT TASK (PT)
Apretext task is a broad-ranged description of self-supervised
training a neural network on a different task than the target
task. This task can be for example predicting the rotation
of an image [40], solving a jigsaw puzzle [43], using a
contrastive loss [25], [55] or maximizing mutual informa-
tion [14], [27]. An overview of most pretext task in this
survey is given in Figure 6 and a complete overview is
given in Table 1. In most cases the self-supervised, pre-
text task is used to learn representations which can then
be fine-tuned for image classification [25], [40], [42]–[44],
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FIGURE 7. Illustration of four selected one-stage-semi-supervised methods – The used method is given below each image. The input including label
information is given in the blue box on the left side. On the right side, an illustration of the method is provided. In general, the process is organized from
top to bottom. At first, the input images are preprocessed by none or two different random transformations t . Special augmentation techniques like
Autoaugment [69] are represented by a red box. The following neural network uses these preprocessed images (x, y ) as input. The calculation of the loss
(dotted line) is different for each method but shares common parts. All methods use the cross-entropy (CE) between label and predicted distribution
P(·|f (x)) on labeled examples. Details about the methods can be found in the corresponding entry in section III whereas abbreviations for common
methods are defined in subsection II-B. EMA stands for the exponential moving average.

[55], [68]. In a semi-supervised context, some methods
use this pretext task to define an additional loss during
training [45].

PSEUDO-LABELS (PL)
A simple approach for estimating labels of unknown data is
using Pseudo-Labels [47]. Lee proposed to classify unseen
data with a neural network and use the predictions as labels.
This process is illustrated in Figure 5d. What sounds at
first like a self-fulfilling assumption works reasonably well
in real-world image classification tasks. It is important to
notice that the network needs additional information to
prevent total random predictions. This additional informa-
tion could be some known labels or a weight initializa-
tion of other supervised data or unsupervised on a pre-
text task. Several modern methods are based on the same
core idea of creating labels by predicting them on their
own [46], [48].

III. METHODS
This section shorty summarizes all methods in the survey
in roughly chronological order and separated by their train-
ing strategy. Each summary states the used common ideas,
explains their usage, and highlights special cases. The abbre-
viations for the common ideas are defined in subsection II-B.
We include a large number of recent methods but we do not
claim this list to be complete.

A. ONE-STAGE-SEMI-SUPERVISED
PSEUDO-LABELS
Pseudo-Labels [47] describes a common idea in deep learning
and a learning method on its own. For the description of
the common idea see above in subsection II-B. In contrast
to many other semi-supervised methods, Pseudo-Labels does
not use a combination of an unsupervised and a supervised
loss. The Pseudo-Labels approach uses the predictions of a

neural network as labels for unknown data as described in the
common idea. Therefore, the labeled and unlabeled data are
used in parallel to minimize the CE loss. Common ideas: CE,
CE*, PL

π -MODEL AND TEMPORAL ENSEMBLING
Laine & Aila present two similar learning methods with
the names π -model and Temporal Ensembling [49]. Both
methods use a combination of the supervised CE loss and
the unsupervised consistency loss MSE. The first input for
the consistency loss in both cases is the output of their
network from a randomly augmented input image. The sec-
ond input is different for each method. In the π -model
an augmentation of the same image is used. In Tempo-
ral Ensembling an exponential moving average of previous
predictions is evaluated. Laine & Aila show that Tempo-
ral Ensembling is up to two times faster and more sta-
ble in comparison to the π -model [49]. Illustrations of
these methods are given in Figure 7. Common ideas: CE,
MSE

MEAN TEACHER
With Mean Teacher Tarvainen & Valpola present a student-
teacher-approach for semi-supervised learning [48]. They
develop their approach based on the π -model and Tempo-
ral Ensembling [49]. Therefore, they also use MSE as a
consistency loss between two predictions but create these
predictions differently. They argue that Temporal Ensem-
bling incorporates new information too slowly into predic-
tions. The reason for this is that the exponential moving
average (EMA) is only updated once per epoch. There-
fore, they propose to use a teacher based on the average
weights of a student in each update step. Tarvainen &
Valpola show for their model that the KL-divergence is
an inferior consistency loss than MSE. An illustration of
this method is given in Figure 7. Common ideas: CE,
MSE

82154 VOLUME 9, 2021



L. Schmarje et al.: Survey on Semi-, Self- and Unsupervised Learning for Image Classification

VIRTUAL ADVERSARIAL TRAINING (VAT)
VAT [65] is not just the name for a common idea but it is
also a one-stage-semi-supervised method. Miyato et al. used
a combination of VAT on unlabeled data and CE on labeled
data [65]. They showed that the adversarial transformation
leads to a lower error on image classification than random
transformations. Furthermore, they showed that adding Ent-
Min [61] to the loss increased accuracy even more. Common
ideas: CE, (EM), VAT

INTERPOLATION CONSISTENCY TRAINING (ICT)
ICT [70] uses linear interpolations of unlabeled data points to
regularize the consistency between images. Verma et al. use a
combination of the supervised loss CE and the unsupervised
loss MSE. The unsupervised loss is measured between the
prediction of the interpolation of two images and the inter-
polation of their Pseudo-Labels. The interpolation is gener-
ated with the mixup [66] algorithm from two unlabeled data
points. For these unlabeled data points, the Pseudo-Labels are
predicted by a Mean Teacher [48] network. Common ideas:
CE, MSE, MU, PL

FAST-STOCHASTIC WEIGHT AVERAGING (FAST-SWA)
In contrast to other semi-supervised methods, Athi-
waratkun et al. do not change the loss but the optimization
algorithm [71]. They analyzed the learning process based
on ideas and concepts of SWA [72], π -model [49] and
Mean Teacher [48]. Athiwaratkun et al. show that averaging
and cycling learning rates are beneficial in semi-supervised
learning by stabilizing the training. They call their improved
version of SWA fast-SWA due to faster convergence and
lower performance variance [71]. The architecture and loss
is either copied from π -model [49] or Mean Teacher [48].
Common ideas: CE, MSE

MixMatch
MixMatch [46] uses a combination of a supervised and
an unsupervised loss. Berthelot et al. use CE as the
supervised loss and MSE between predictions and gen-
erated Pseudo-Labels as their unsupervised loss. These
Pseudo-Labels are created from previous predictions of aug-
mented images. They propose a novel sharping method over
multiple predictions to improve the quality of the Pseudo-
Labels. This sharpening also enforces implicitly a minimiza-
tion of the entropy on the unlabeled data. Furthermore, they
extend the algorithm mixup [66] to semi-supervised learning
by incorporating the generated labels. Common ideas: CE,
(EM), MSE, MU, PL

ENSEMPLE AutoEndocing TRANSFORMATION (EnAET)
EnAET [73] combines the self-supervised pretext task
AutoEncoding Transformations [74] with MixMatch [46].
Wang et al. apply spatial transformations, such as transla-
tions and rotations, and non-spatial transformations, such as
color distortions, on input images in the pretext task. The

transformations are then estimated with the original and aug-
mented image given. This is a difference to other pretext tasks
where the estimation is often based on the augmented image
only [40]. The loss is used together with the loss ofMixMatch
and is extended with the Kullback Leiber divergence between
the predictions of the original and the augmented image.
Common ideas: CE, (EM), KL, MSE, MU, PL, PT

UNSUPERVISED DATA AUGMENTATION (UDA)
Xie et al. present with UDA a semi-supervised learning
algorithm that concentrates on the usage of state-of-the-art
augmentation [16]. They use a supervised and an unsuper-
vised loss. The supervised loss is CE whereas the unsu-
pervised loss is the Kullback Leiber divergence between
output predictions. These output predictions are based on
an image and an augmented version of this image. For
image classification, they propose to use the augmentation
scheme generated by AutoAugment [69] in combination
with Cutout [75]. AutoAugment uses reinforcement learning
to create useful augmentations automatically. Cutout is an
augmentation scheme where randomly selected regions of
the image are masked out. Xie et al. show that this com-
bined augmentation method achieves higher performance in
comparison to previous methods on their own like Cutout,
Cropping, or Flipping. In addition to the different augmen-
tation, they propose to use a variety of other regularization
methods. They proposed Training Signal Annealing which
restricts the influence of labeled examples during the training
process to prevent overfitting. They use EntMin [61] and
a kind of Pseudo-Labeling [47]. We use the term kind of
Pseudo-Labeling because they do not use the predictions
as labels but they use them to filter unsupervised data for
outliers. An illustration of this method is given in Figure 7.
Common ideas: CE, EM, KL, (PL)

SELF-PACED MULTI-VIEW CO-TRAINING (SpamCo)
Ma et al. propose a general framework for co-training across
multiple views [76]. In the context of image classification,
different neural networks can be used as different views. The
main idea of the co-training between different views is similar
to using Pseudo-Labels. The main differences in SpamCo are
that the Pseudo-Labels are not used for all samples and they
influence each other across views. Each unlabeled image has
a weight value for each view. Based on an age parameter,
more unlabeled images are considered in each iteration. At
first only confident Pseudo-Labels are used and over time
also less confident ones are allowed. The proposed hard or
soft co-regularizers also influence the weighting of the unla-
beled images. The regularizers encourage to select unlabeled
images for training across views. Without this regularization
the training would degenerate to an independent training
of the different views/models. CE is used as loss on the
labels and Pseudo-Labels with additional L2 regularization.
Ma et al. show further applications including text classifica-
tion and object detection. Common ideas: CE, CE*, MSE, PL
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FIGURE 8. Illustration of four selected methods – The used method is given below each image. The input including label information is given in the blue
box on the left side. On the right side, an illustration of the method is provided. For FOC the second stage is represented. In general, the process is
organized from top to bottom. At first, the input images are preprocessed by none or two different random transformations t . Special augmentation
techniques like CTAugment [45] are represented by a red box. The following neural network uses these preprocessed images (e.g. x, y ) as input. The
calculation of the loss (dotted line) is different for each method but shares common parts. All methods use the cross-entropy (CE) between label and
predicted distribution P(·|f (x)) on labeled examples. Details about the methods can be found in the corresponding entry in section III whereas
abbreviations for common methods are defined in subsection II-B.

ReMixMatch
ReMixMatch [45] is an extension of MixMatch with distribu-
tion alignment and augmentation anchoring. Berthelot et al.
motivate the distribution alignment with an analysis ofmutual
information. They use entropy minimization via ‘‘sharpen-
ing’’ but they do not use any prediction equalization like in
mutual information. They argue that an equal distribution is
also not desirable since the distribution of the unlabeled data
could be skewed. Therefore, they align the predictions of the
unlabeled data with a marginal class distribution over the
seen examples. Berthelot et al. exchange the augmentation
scheme of MixMatch with augmentation anchoring. Instead
of averaging the prediction over different slight augmenta-
tions of an image they only use stronger augmentations as
regularization. All augmented predictions of an image are
encouraged to result in the same distribution with CE instead
of MSE. Furthermore, a self-supervised loss based on the
rotation pretext task [40]was added.Common ideas: CE, CE*
(EM), (MI), MU, PL, PT

FixMatch
FixMatch [26] is building on the ideas of ReMixMatch
but is dropping several ideas to make the framework more
simple while achieving a better performance. FixMatch is
using the cross-entropy loss on the supervised and the
unsupervised data. For each image in the unlabeled data,
one weakly- and one strongly-augmented version is cre-
ated. The Pseudo-Label of the weakly-augmented version is
used if a confidence threshold is surpassed by the network.
If a Pseudo-Label is calculated the network output of the
strongly-augmented version is compared with this hard label
via cross-entropy which implicitly encourages low-entropy
predictions on the unlabeled data [26]. Sohn et al. do not use
ideas likeMixup, VAT, or distribution alignment but they state
that they can be used and provide ablations for some of these
extensions. Common ideas: CE, CE*, (EM), PL

B. MULTI-STAGE-SEMI-SUPERVISED
EXEMPLAR
Dosovitskiy et al. proposed a self-supervised pretext task
with additional fine-tuning [68]. They randomly sample
patches from different images and augment these patches
heavily. Augmentations can be for example rotations, trans-
lations, color changes, or contrast adjustments. The classifi-
cation task is to map all augmented versions of a patch to
the correct original patch using cross-entropy loss. Common
ideas: CE, CE*, PT

CONTEXT
Doersch et al. propose to use context prediction as a pretext
task for visual representation learning [42]. A central patch
and an adjacent patch from an image are used as input. The
task is to predict one of the 8 possible relative positions
of the second patch to the first one using cross-entropy
loss. An illustration of the pretext task is given in Figure 6.
Doersch et al. argue that this task becomes easier if you
recognize the content of these patches. The authors fine-tune
their representations for other tasks and show their superiority
in comparison to the random initialization. Aside from fine-
tuning, Doersch et al. show how their method could be used
for Visual Data Mining. Common ideas: CE, CE*, PT

JIGSAW
Noroozi and Favaro propose to solve Jigsaw puzzles as a
pretext task [43]. The idea is that a network has to understand
the concept of a presented object to solve the puzzle using
the classification loss cross-entropy. They prevent simple
solutions that only look at edges or corners by including
small random margins between the puzzle patches. They
fine-tune on supervised data for image classification tasks.
Noroozi et al. extended the Jigsaw task by adding image parts
of a different image [44]. They call the extension Jigsaw++.
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FIGURE 9. Illustration of four selected multi-stage-semi-supervised methods – The used method is given below each image. The input is given in the red
box on the left side. On the right side, an illustration of the method is provided. The fine-tuning part is excluded and only the first stage/pretext task is
represented. In general, the process is organized from top to bottom. At first, the input images are either preprocessed by one or two random
transformations t or are split up. The following neural network uses these preprocessed images (x, y ) as input. The calculation of the loss (dotted line) is
different for each method. AMDIM and CPC use internal elements of the network to calculate the loss. DeepCluster and IIC use the predicted output
distributions (P(·|f (x)),P(·|f (y ))) to calculate a loss. Details about the methods can be found in the corresponding entry in section III whereas
abbreviations for common methods are defined in subsection II-B.

Examples for a Jigsaw or Jigsaw++ puzzle are given in
Figure 6. Common ideas: CE, CE*, PT

DeepCluster
DeepCluster [67] is a self-supervised method that generates
labels by k-means clustering. Caron et al. iterate between
clustering of predicted labels to generate Pseudo-Labels and
training with cross-entropy on these labels. They show that it
is beneficial to use overclustering in the pretext task. After
the pretext task, they fine-tune the network on all labels.
An illustration of this method is given in Figure 9. Common
ideas: CE, OC, PL, PT

ROTATION
Gidaris et al. use a pretext task based on image rotation
prediction [40]. They propose to randomly rotate the input
image by 0, 90, 180, or 270 degrees and let the network
predict the chosen rotation degree. They train the network
with cross-entropy on this classification task. In their work,
they also evaluate different numbers of rotations but four
rotations score the best result. For image classification, they
fine-tune on labeled data. Common ideas: CE, CE*, PT

CONTRASTIVE PREDICTIVE CODING (CPC)
CPC [55], [56] is a self-supervised method that predicts
representations of local image regions based on previous
image regions. The authors determine the quality of these
predictions with a contrastive loss which identifies the correct
prediction out of randomly sampled negative ones. They call
their loss InfoNCE which is cross-entropy for the prediction
of positive examples [55]. Van den Oord et al. showed that
minimizing InfoNCE maximizes the lower bound for MI
between the previous image regions and the predicted image
region [55]. An illustration of this method is given in Figure 9.
The representations of the pretext task are then fine-tuned.
Common ideas: CE, (CE*), CL, (MI), PT

CONSTRASTIVE MULTIVIEW CODING (CMC)
CMC [54] generalizes CPC [55] to an arbitrary collection of
views. Tian et al. try to learn an embedding that is different
for contrastive samples and equal for similar images. Like
Oord et al. they train their network by identifying the cor-
rect prediction out of multiple negative ones [55]. However,
Tian et al. take different views of the same image such as
color channels, depth, and segmentation as similar images.
For common image classification datasets like STL-10, they
use patch-based similarity. After this pretext task, the rep-
resentations are fine-tuned to the desired dataset. Common
ideas: CE, (CE*), CL, (MI), PT

DEEP InfoMax (DIM)
DIM [77] maximizes the MI between local input regions and
output representations. Hjelm et al. show that maximizing
over local input regions rather than the complete image is
beneficial for image classification. Also, they use a discrim-
inator to match the output representations to a given prior
distribution. In the end, they fine-tune the network with an
additional small fully-connected neural network. Common
ideas: CE, MI, PT

AUGMENTED MULTISCALE DEEP InfoMax (AMDIM)
AMDIM [78] maximizes the MI between inputs and outputs
of a network. It is an extension of the method DIM [77]. DIM
usually maximizes MI between local regions of an image and
a representation of the image. AMDIM extends the idea of
DIM in several ways. Firstly, the authors sample the local
regions and representations from different augmentations of
the same source image. Secondly, they maximizeMI between
multiple scales of the local region and the representation.
They use a more powerful encoder and define mixture-based
representations to achieve higher accuracies. Bachman et al.
fine-tune the representations on labeled data to measure their
quality. An illustration of this method is given in Figure 9.
Common ideas: CE, MI, PT
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DEEP METRIC TRANSFER (DMT)
DMT [79] learns a metric as a pretext task and then propa-
gates labels onto unlabeled data with this metric. Liu et al.
use self-supervised image colorization [80] or unsupervised
instance discrimination [81] to calculate a metric. In the sec-
ond stage, they propagate labels to unlabeled data with spec-
tral clustering and then fine-tune the network with the new
Pseudo-Labels. Additionally, they show that their approach is
complementary to previousmethods. If they use themost con-
fident Pseudo-Labels for methods such as Mean Teacher [48]
or VAT [65], they can improve the accuracy with very few
labels by about 30%. Common ideas: CE, CE*, PL, PT

INVARIANT INFORMATION CLUSTERING (IIC)
IIC [14] maximizes the MI between augmented views of
an image. The idea is that images should belong to the
same class regardless of the augmentation. The augmenta-
tion has to be a transformation to which the neural network
should be invariant. The authors do not maximize directly
over the output distributions but over the class distribution
which is approximated for every batch. Ji et al. use auxiliary
overclustering on a different output head to increase their
performance in the unsupervised case. This idea allows the
network to learn subclasses and handle noisy data. Ji et al.
use Sobel filtered images as input instead of the original RGB
images. Additionally, they show how to extend IIC to image
segmentation. Up to this point, the method is completely
unsupervised. To be comparable to other semi-supervised
methods they fine-tune their models on a subset of available
labels. An illustration of this method is given in Figure 9.
The first unsupervised stage can be seen as a self-supervised
pretext task. In contrast to other pretext tasks, this task already
predicts representations which can be seen as classifications.
Common ideas: CE, MI, OC, PT

SELF-SUPERVISED SEMI-SUPERVISED LEARNING (S4L)
S4L [15] is, as the name suggests, a combination of
self-supervised and semi-supervisedmethods. Zhai et al. split
the loss into a supervised and an unsupervised part. The
supervised loss is CE whereas the unsupervised loss is based
on the self-supervised techniques using rotation and exemplar
prediction [40], [68]. The authors show that their method per-
forms better than other self-supervised and semi-supervised
techniques [40], [47], [61], [65], [68]. In their Mix Of
All Models (MOAM) they combine self-supervised rotation
prediction, VAT, entropy minimization, Pseudo-Labels, and
fine-tuning into a single model with multiple training steps.
Since we discuss the results of their MOAM we identify S4L
as a multi-stage-semi-supervised method. Common ideas:
CE, CE*, EM, PL, PT, VAT

SIMPLE FRAMEWORK FOR CONTRASTIVE LEARNING OF
VISUAL REPRESENTATION (SimCLR)
SimCLR [25] maximizes the agreement between two differ-
ent augmentations of the same image. The method is similar

to CPC [55] and IIC [14]. In comparison to CPC Chen et al.
do not use the different inner representations. Contrary to
IIC they use normalized temperature-scaled cross-entropy
(NT-Xent) as their loss. Based on the cosine similarity of
the predictions, NT-Xent measures whether positive pairs are
similar and negative pairs are dissimilar. Augmented versions
of the same image are treated as positive pairs and pairs with
any other image as negative pair. The system is trained with
large batch sizes of up to 8192 instead of a memory bank to
create enough negative examples.Common ideas: CE, (CE*),
CL, PT

FUZZY OVERCLUSTERING (FOC)
Fuzzy Overclustering [27] is an extension of IIC [14].
FOC focuses on using overclustering to subdivide fuzzy
labels in real-world datasets. Therefore, it unifies the used
data and losses proposed by IIC between the different
stages and extends it with new ideas such as the novel
loss Inverse Cross-Entropy (CE−1). This loss is inspired by
Cross-Entropy but can be used on the overclustering results
of the network where no ground truth labels are known. FOC
is not achieving state-of-the-art results on a common image
classification dataset. However, on a real-world plankton
dataset with fuzzy labels, it surpasses FixMatch and shows
that 5-10%more consistent predictions can be achieved. Like
IIC, FOC can be viewed as a multi-stage-semi-supervised
and an one-stage-unsupervised method. In general, FOC is
trained in one unsupervised and one semi-supervised stage
and can be seen as a multi-stage-semi-supervised method.
Like IIC, it produces classifications already in the unsu-
pervised stage and can therefore also be seen as an one-
stage-unsupervised method. Common ideas: CE, (CE*) MI,
OC, PT

MOMENTUM CONTRAST (MoCo)
He et al. propose to use a momentum encoder for contrastive
learning [82]. In other methods [25], [55]–[57], the negative
examples for the contrastive loss are sampled from the same
mini-batch as the positive pair. A large batch size is needed
to ensure a great variety of negative examples. He et al.
sample their negative examples from a queue encoded by
another network whose weights are updated with an expo-
nential moving average of the main network. They solve
the pretext task proposed by [81] with negative examples
samples from their queue and fine-tune in a second stage
on labeled data. Chen et al. provide further ablations and
baseline for the MoCo Framework e.g. by using a MLP head
for fine-tuning [83]. Common ideas: CE, CL, PT

BOOTSTRAP YOU OWN LATENT (BYOL)
Grill et al. use an online and a target network. In the pro-
posed pretext task, the online network predicts the image
representation of the target network for an image [28]. The
difference between the predictions is measured with MSE.
Normally, this approach would lead to a degeneration of the
network as a constant prediction over all images would also
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FIGURE 10. Illustration of four selected multi-stage-semi-supervised methods – The used method is given below each image. The input is given in the red
(not using labels) or blue (using labels) box on the left side. On the right side, an illustration of the method is provided. The fine-tuning part is excluded
and only the first stage/pretext task is represented. For SimCLRv2 the second stage or distillation step is illustrated. In general, the process is organized
from top to bottom. At first, the input images are either preprocessed by one or two random transformations t or are split up. The following neural
network uses these preprocessed images (x, y ) as input. Details about the methods can be found in the corresponding entry in section III whereas
abbreviations for common methods are defined in subsection II-B. EMA stands for the exponential moving average.

achieve the goal. In contrastive learning, this degeneration
is avoided by selecting a positive pair of examples from
multiple negative ones [25], [55]–[57], [82], [83]. By using
a slow-moving average of the weights between the online
and target network, Grill et al. show empirically that the
degeneration to a constant prediction can be avoided. This
approach has the positive effect that BYOL performance is
depending less on hyperparameters like augmentation and
batch size [28]. In a follow-up work, Richemond et al. show
that BYOL even works when no batch normalization which
might have introduced kind of a contrastive learning effect in
the batches is used [84]. Common ideas: MSE, PT

SIMPLE FRAMEWORK FOR CONTRASTIVE LEARNING OF
VISUAL REPRESENTATION (SimCLRv2)
Chen et al. extend the framework SimCLR by using larger
and deeper networks and by incorporating the memory mech-
anism from MoCo [57]. Moreover, they propose to use this
framework in three steps. The first is training a contrastive
learning pretext task with a deep neural network and the
SimCLRv2 method. The second step is fine-tuning this large
network with a small amount of labeled data. The third step
is self-training or distillation. The large pretrained network is
used to predict Pseudo-Labels on the complete (unlabeled)
data. These (soft) Pseudo-Labels are then used to train a
smaller neural network with CE. The distillation step could
be also performed on the same network as in the pretext
task. Chen et al. show that even this self-distillation leads to
performance improvements [57]. Common ideas: CE, (CE*),
CL, PL, PT

C. ONE-STAGE-UNSUPERVISED
DEEP ADAPTIVE IMAGE CLUSTERING (DAC)
DAC [50] reformulates unsupervised clustering as a pair-
wise classification. Similar to the idea of Pseudo-Labels
Chang et al. predict clusters and use these to retrain the
network. The twist is that they calculate the cosine dis-

tance between all cluster predictions. This distance is used
to determine whether the input images are similar or dis-
similar with a given certainty. The network is then trained
with binary CE on these certain similar and dissimilar input
images. One can interpret these similarities and dissimilar-
ities as Pseudo-Labels for the similarity classification task.
During the training process, they lower the needed certainty to
includemore images. As input Chang et al. use a combination
of RGB and extracted HOG features. Common ideas: PL

INFORMATION MAXIMIZING SELF-AUGMENTED
TRAINING (IMSAT)
IMSAT [85] maximizes MI between the input and output
of the model. As a consistency regularization Hu et al. use
CE between an image prediction and an augmented image
prediction. They show that the best augmentation of the pre-
diction can be calculated with VAT [65]. The maximization
of MI directly on the image input leads to a problem. For
datasets like CIFAR-10, CIFAR-100 [86] and STL-10 [52]
the color information is too dominant in comparison to the
actual content or shape. As a workaround, Hu et al. use the
features generated by a pretrained CNN on ImageNet [1] as
input. Common ideas: MI, VAT

INVARIANT INFORMATION CLUSTERING (IIC)
IIC [14] is described above as a multi-stage-semi-supervised
method. In comparison to other presented methods, IIC cre-
ates usable classifications without fine-tuning the model on
labeled data. The reason for this is that the pretext task is con-
structed in such a way that label predictions can be extracted
directly from the model. This leads to the conclusion that IIC
can also be interpreted as an unsupervised learning method.
Common ideas: MI, OC

FUZZY OVERCLUSTERING (FOC)
FOC [27] is described above as amulti-stage-semi-supervised
method. Like IIC, FOC can also be seen as an one-
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FIGURE 11. Examples of four random cats in the different datasets to illustrate the difference in quality.

stage-unsupervised method because the first stage yields
cluster predictions. Common ideas: MI, OC

SEMANTIC CLUSTERING BY ADOPTING NEAREST
NEIGHBORS (SCAN)
Gansbeke et al. calculate clustering assignments building on
self-supervised pretext task by mining the nearest neighbors
and using self-labeling. They propose to use SimCLR [25]
as a pretext task but show that other pretext tasks [40], [81]
could also be used for this step. For each sample, the k nearest
neighbors are selected in the gained feature space. The novel
semantic clustering loss encourages these samples to be in the
same cluster. Gansbeke et al. noticed that the wrong nearest
neighbors have a lower confidence and propose to create
Pseudo-Labels on only confident examples for further fine-
tuning. They also show that Overclustering can be success-
fully used if the number of clusters is not known before.
Common ideas: OC, PL, PT

IV. ANALYSIS
In this chapter, we will analyze which common ideas are
shared or differ between methods. We will compare the per-
formance of all methods with each other on common deep
learning datasets.

A. DATASETS
In this survey, we compare the presented methods on a vari-
ety of datasets. We selected four datasets that were used in
multiple papers to allow a fair comparison. An overview of
example images is given in Figure 11.

CIFAR-10 AND CIFAR-100
are large datasets of tiny color images with size 32 ×
32 [86]. Both datasets contain 60,000 images belonging to
10 or 100 classes respectively. The 100 classes in CIFAR-
100 can be combined into 20 superclasses. Both sets provide
50,000 training examples and 10,000 validation examples

(image + label). The presented results are only trained
with 4,000 labels for CIFAR-10 and 10,000 labels for
CIFAR-100 to represent a semi-supervised case. If a method
uses all labels this is marked independently.

STL-10
is dataset designed for unsupervised and semi-supervised
learning [52]. The dataset is inspired by CIFAR-10 [86] but
provides fewer labels. It only consists of 5,000 training labels
and 8,000 validation labels. However, 100,000 unlabeled
example images are also provided. These unlabeled examples
belong to the training classes and some different classes.
The images are 96 × 96 color images and were acquired in
combination with their labels from ImageNet [1].

ILSVRC-2012
is a subset of ImageNet [1]. The training set consists
of 1.2 million images whereas the validation and the test set
include 150,000 images. These images belong to 1000 object
categories. Due to this large number of categories, it is com-
mon to report Top-5 and Top-1 accuracy. Top-1 accuracy is
the classical accuracy where one prediction is compared to
one ground-truth label. Top-5 accuracy checks if a ground
truth label is in a set of at most five predictions. For fur-
ther details on accuracy see subsection IV-B. The presented
results are only trained with 10% of labels to represent a
semi-supervised case. If a method uses all labels this is
marked independently.

B. EVALUATION METRICS
We compare the performance of all methods based on their
classification score. This score is defined differently for unsu-
pervised and all other settings. We follow standard protocol
and use the classification accuracy in most cases. For unsu-
pervised learning, we use cluster accuracy because we need
to handle the missing labels during the training. We need to
find the best one-to-one permutations (σ ) from the network
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cluster predictions to the ground-truth classes. For N images
x1, . . . , xN ∈ Xl with labels zxi and predictions f (xi) ∈ RC

the accuracy is defined in Equation 7 whereas the cluster
accuracy is defined in Equation 8.

ACC(x1, . . . , xN )=

∑N
i=1 1zxi=argmax1≤j≤C f (xi)j

N
(7)

ACC(x1, . . . , xN )=max
σ

∑N
i=1 1zxi=σ (argmax1≤j≤C f (xi)j)

N
(8)

C. COMPARISON OF METHODS
In this subsection, we will compare the methods concerning
their used common ideas and performance. We will summa-
rize the presented results and discuss the underlying trends in
the next subsection.

COMPARISON CONCERNING USED COMMON IDEAS
In Table 1 we present all methods and their used com-
mon ideas. Following our definition of common ideas in
subsection II-B, we evaluate only ideas that were used
frequently in different papers. Special details such as the
different optimizer for fast-SWA or the used approxima-
tion for MI are excluded. Please see section III for further
details.

One might expect that common ideas are used equally
between methods and training strategies. We rather see a
tendency that common ideas differ between training strate-
gies. We will step through all common ideas based on the
significance of differentiating the training strategies.

A major separation between the training strategies can be
based on CE and pretext tasks. All one-stage-semi-supervised
methods use a cross-entropy loss during training whereas
only two use additional losses based on pretext tasks.
All multi-stage-semi-supervised methods use a pretext task
and use CE for fine-tuning. All one-stage-semi-supervised
methods use no CE and often use a pretext task. Due to
our definition of the training strategies this grouping is
expected.

However, further clusters of the common ideas are visi-
ble. We notice that some common ideas are (almost) solely
used by one of the two semi-supervised strategies. These
common ideas are EM, KL, MSE, and MU for one-stage-
semi-supervised methods and CL, MI, and OC for multi-
stage-semi-supervised methods. We hypothesize that this
shared and different usage of ideas exists due to the dif-
ferent usage of unlabeled data. For example, one-stage-
semi-supervised methods use the unlabeled and labeled data
in the same stage and therefore might need to regularize the
training with MSE.

If we compare multi-stage-semi-supervised and one-
stage-unsupervised training we notice that MI, OC, and PT
are often used in both. All three of them are not often used
with one-stage-semi-supervised training as stated above. We
hypothesize that this similarity arises because most multi-
stage-semi-supervised methods have an unsupervised stage
followed by a supervised stage. For the method IIC the

authors even proposed to fine-tune the unsupervised method
to surpass purely supervised results. CE*, PL, and VAT are
used in several different methods. Due to their simple and
complementary idea, they can be used in a variety of different
methods. UDA for example uses PL to filter the unlabeled
data for useful images. CE* seems to be more often used
by multi-stage-semi-supervised methods. The parentheses in
Table 1 indicate that they often also motivate another idea like
CE−1 [27] or the CL loss [25], [55]. All in all, we see that the
defined training strategies share common ideas inside each
strategy and differ in the usage of ideas between them. We
conclude that the definition of the training strategies is not
only logical but is also supported by their usage of common
ideas.

COMPARISON CONCERNING PERFORMANCE
We compare the performance of the different methods
based on their respective reported results or cross-references
in other papers. For better comparability, we would have
liked to recreate every method in a unified setup but this
was not feasible. Whereas using reported values might be
the only possible approach, it leads to drawbacks in the
analysis.

Kolesnikov et al. showed that changes in the archi-
tecture can lead to significant performance boost or
drops [89]. They state that ’neither [. . . ] the ranking
of architectures [is] consistent across different methods,
nor is the ranking of methods consistent across architec-
tures’ [89]. Most methods try to achieve comparability
with previous ones by a similar setup but over time small
differences still aggregate and lead to a variety of used
architectures. Some methods use only early convolutional
networks such as AlexNet [1] but others use more modern
architectures like Wide ResNet-Architecture [90] or Shake-
Shake-Regularization [91].

Oliver et al. proposed guidelines to ensure more com-
parable evaluations in semi-supervised learning [92]. They
showed that not following these guidelines may lead to
changes in the performance [92]. Whereas some methods try
to follow these guidelines, we cannot guarantee that all meth-
ods do so. This impacts comparability further. Considering
the above-mentioned limitations, we do not focus on small
differences but look for general trends and specialties instead.

Table 2 shows the collected results for all presented meth-
ods. We also provide results for the respective supervised
baselines reported by the authors. To keep fair comparability
we did not add state-of-the-art baselines with more complex
architectures. Table 3 shows the results for even fewer labels
as normally defined in subsection IV-A.

In general, the used architectures become more complex
and the accuracies rise over time. This behavior is expected
as new results are often improvements of earlier works. The
changes in architecture may have led to these improvements.
However, many papers include ablation studies and com-
parisons to only supervised methods to show the impact
of their method. We believe that a combination of more
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TABLE 1. Overview of the methods and their used common ideas — On the left-hand side, the reviewed methods from section III are sorted by the training
strategy. The top row lists the common ideas. Details about the ideas and their abbreviations are given in subsection II-B. The last column and some rows
sum up the usage of ideas per method or training strategy. Legend : (X) The idea is only used indirectly. The individual explanations are given in section III.

modern architecture and more advanced methods lead to
improvements.

For the CIFAR-10 dataset, almost all multi- or one-stage-
semi-supervised methods reach about or over 90% accuracy.
The best methodsMixMatch and FixMatch reach an accuracy
of more than 95% and are roughly three percent worse than
the fully supervised baseline. For the CIFAR-100 dataset,
fewer results are reported. FixMatch is with about 77%on this
dataset the best method in comparison to the fully supervised
baseline of about 80%. Newer methods also provide results
for 1000 or even 250 labels instead of 4000 labels. Especially

EnAET, ReMixMatch, and FixMatch stick out since they
achieve only 1-2% worse results with 250 labels instead of
with 4000 labels.

For the STL-10 dataset, most methods report a better
result than the supervised baseline. These results are possi-
ble due to the unlabeled part of the dataset. The unlabeled
data can only be utilized by semi-, self-, or unsupervised
methods. EnAET achieves the best results with more than
95%. FixMatch reports an accuracy of nearly 95% with only
1000 labels. This is more than most methods achieve with
5000 labels.
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TABLE 2. Overview of the reported accuracies — The first column states the used method. For the supervised baseline, we used the best-reported results
which were considered as baselines in the referenced papers. The original paper is given in brackets after the score. The architecture is given in the second
column. The last four columns report the Top-1 accuracy score in % for the respective dataset (See subsection IV-B for further details). If the results are
not reported in the original paper, the reference is given after the result. A blank entry represents the fact that no result was reported. Be aware that
different architectures and frameworks are used which might impact the results. Please see subsection IV-C for a detailed explanation. Legend : † 100% of
the labels are used instead of the default value defined in subsection IV-A. ‡ Multilayer perceptron is used for fine-tuning instead of one fully connected
layer. Remarks on special architectures and evaluations: 1 Architecture includes Shake-Shake regularization. 2 Network uses wider hidden layers. 3

Method uses ten random classes out of the default 1000 classes. 4 Network only predicts 20 superclasses instead of the default 100 classes. 5 Inputs are
pretrained ImageNet features. 6 Method uses different copies of the network for each input. 7 The network uses selective kernels [87].

The ILSVRC-2012 dataset is the most difficult dataset
based on the reported Top-1 accuracies. Most methods only
achieve a Top-1 accuracy which is roughly 20% worse than
the reported supervised baseline with around 86%. Only
the methods SimCLR, BYOL, and SimCLRv2 achieve an
accuracy that is less than 10% worse than the baseline. Sim-
CLRv2 achieves the best accuracy with a Top-1 accuracy
of 80.9% and a Top-5 accuracy of around 96%. For fewer
labels also SimCLR, BYOL and SimCLRv2 achieve the best
results.

The unsupervised methods are separated from the super-
vised baseline by a clearmargin of up to 10%. SCANachieves
the best results in comparison to the other methods as it builds
on the strong pretext task of SimCLR. This also illustrates the
reason for including the unsupervised method in a compar-
ison with semi-supervised methods. Unsupervised methods
do not use labeled examples and therefore are expected to
be worse. However, the data show that the gap of 10% is
not large and that unsupervised methods can benefit from
ideas of self-supervised learning. Some paper report results
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TABLE 3. Overview of the reported accuracies with fewer labels - The first column states the used method. The last seven columns report the
Top-1 accuracy score in % for the respective dataset and amount of labels. The number is either given as an absolute number or in percent. A blank entry
represents the fact that no result was reported.

for even fewer labels as shown in Table 3 which closes the
gap to unsupervised learning further. IMSAT reports an accu-
racy of about 94% on STL-10. Since IMSAT uses pretrained
ImageNet features, a superset of STL-10, the results are not
directly comparable.

D. DISCUSSION
In this subsection, we discuss the presented results of the pre-
vious subsection. We divide our discussion into three major
trends that we identified. All these trends lead to possible
future research opportunities.

1) TREND: REAL WORLD APPLICATIONS?
Previous methods were not scalable to real-world images
and applications and used workarounds e.g. extracted fea-
tures [85] to process real-world images. Many methods
can report a result of over 90% on CIFAR-10, a simple
low-resolution dataset. Only five methods can achieve a Top-
5 accuracy of over 90% on ILSVRC-2012, a high-resolution
dataset. We conclude that most methods are not scalable
to high-resolution and complex image classification prob-
lems. However, the best-reported methods like FixMatch and
SimCLRv2 seem to have surpassed the point of only scien-
tific usage and could be applied to real-world classification
tasks.

This conclusion applies to real-world image classification
tasks with balanced and clearly separated classes. This con-
clusion also implicates which real-world issues need to be
solved in future research. Class imbalance [93], [94] or noisy
labels [27], [95] are not treated by the presented methods.
Datasets with also few unlabeled data points are not con-
sidered. We see that good performance on well-structured
datasets does not always transfer completely to real-world
datasets [27]. We assume that these issues arise due to
assumptions that do not hold on real-world datasets like
a clear distinction between datapoints [27] and non-robust
hyperparameters like augmentations and batch size [28].
Future research has to address these issues so that reduced

supervised learning methods can be applied to any real-world
datasets.

2) TREND: HOW MUCH SUPERVISION IS NEEDED?
We see that the gap between reduced supervised and super-
vised methods is shrinking. For CIFAR-10, CIFAR-100 and
ILSVRC-2012 we have a gap of less than 5% left between
total supervised and reduced supervised learning. For
STL-10 the reduced supervised methods even surpass the
total supervised case by about 20% due to the additional set of
unlabeled data.We conclude that reduced supervised learning
reaches comparable results while using only roughly 10% of
the labels.

In general, we considered a reduction from 100% to 10%
of all labels. However, we see that methods like FixMatch
and SimCLRv2 achieve comparable results with even fewer
labels such as the usage of 1% of all labels. For ILSVRC-
2012 this is equivalent to about 13 images per class. FixMatch
even achieves a median accuracy of around 65% for one label
per class for the CIFAR-10 dataset [26].

The trend that results improve overtime is expected.
But the results indicate that we are near the point where
semi-supervised learning needs very few to almost no labels
per class (e.g. 10 labels for CIFAR10). In practice, the label-
ing cost for unsupervised and semi-supervised will almost be
the same for common classification datasets. Unsupervised
methods would need to bridge the performance gap on these
classification datasets to be useful anymore. It is questionable
if an unsupervised method can achieve this because it would
need to guess what a human wants to have classified even
when competing features are available.

We already see that on datasets like ImageNet additional
data such as JFT-300M is used to further improve the super-
vised training [96]–[98]. These large amounts of data can
only be collected without any or weak labels as the col-
lection process has to be automated. It will be interesting
to investigate if the discussed methods in this survey can
also scale to such datasets while using only few labels per
class.
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We conclude that on datasets with few and a fixed number
of classes semi-supervised methods will be more important
than unsupervised methods. However, if we have a lot of
classes or new classes should be detected like in few- or
zero-shot learning [38], [94], [99], [100] unsupervised meth-
ods will still have a lower labeling cost and be of high
importance. This means future research has to investigate
how the semi-supervised ideas can be transferred to unsu-
pervised methods as in [14], [41] and to settings with many,
an unknown or rising amount of classes like in [39], [96].

3) TREND: COMBINATION OF COMMON IDEAS
In the comparison, we identified that few common ideas
are shared by one-stage-semi-supervised and multi-stage-
semi-supervised methods.

We believe there is only a little overlap between these
methods due to the different aims of the respective authors.
Many multi-stage-semi-supervised papers focus on creating
good representations. They fine-tune their results only to be
comparable. One-stage-semi-supervised papers aim for the
best accuracy scores with as few labels as possible.

If we look at methods like SimCLRv2, EnAET, ReMix-
Match, or S4L we see that it can be beneficial to combine dif-
ferent ideas and mindsets. These methods used a broad range
of ideas and also ideas uncommon for their respective training
strategy. S4L calls their combined approach even ‘‘Mix of
all models’’ [15] and SimCLRv2 states that ‘‘Self-Supervised
Methods are Strong Semi-Supervised Learners’’ [57].

We assume that this combination is one reason for their
superior performance. This assumption is supported by the
included comparisons in the original papers. For example,
S4L showed the impact of each method separately as well as
the combination of all [15].

Methods like Fixmatch illustrate that it does not need a lot
of common ideas to achieve state-of-the-art performance but
rather that the selection of the correct ideas and combining
them in a meaningful is important. We identified that some
common ideas are not often combined and that the combina-
tion of a broad range and unusual ideas can be beneficial. We
believe that the combination of the different common idea is
a promising future research field because many reasonable
combinations are yet not explored.

V. CONCLUSION
In this paper, we provided an overview of semi-, self-, and
unsupervised methods. We analyzed their difference, similar-
ities, and combinations based on 34 different methods. This
analysis led to the identification of several trends and possible
research fields.

We based our analysis on the definition of the different
training strategies and common ideas in these strategies. We
showed how the methods work in general, which ideas they
use and provide a simple classification. Despite the difficult
comparison of the methods’ performances due to different
architectures and implementations, we identified three major
trends.

Results of over 90% Top-5 accuracy on ILSVRC-
2012with only 10%of the labels indicate that semi-supervised
methods could be applied to real-world problems. However,
issues like class imbalance and noisy or fuzzy labels are
not considered. More robust methods need to be researched
before semi-supervised learning can be applied to real-world
issues.

The performance gap between supervised and semi- or
self-supervisedmethods is closing and the number of labels to
get comparable results to fully supervised learning is decreas-
ing. In the future, the unsupervised methods will have almost
no labeling cost benefit in comparison to the semi-supervised
methods due to these developments. We conclude that in
combination with the fact that semi-supervised methods have
the benefit of using labels as guidance unsupervised methods
will lose importance. However, for a large number of classes
or an increasing number of classes the ideas of unsupervised
are still of high importance and ideas from semi-supervised
and self-supervised learning need to be transferred to this
setting.

We concluded that one-stage-semi-supervised and multi-
stage-semi-supervised training mainly use a different set of
common ideas. Both strategies use a combination of different
ideas but there are few overlaps in these techniques. We
identified the trend that a combination of different techniques
is beneficial to the overall performance. In combination with
the small overlap between the ideas, we identified possible
future research opportunities.
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