1,758 research outputs found

    Midinfrared Conductivity in Orientationally Disordered Doped Fullerides

    Full text link
    The coupling between the intramolecular vibrational modes and the doped conduction electrons in M3C60M_3C_{60} is studied by a calculation of the electronic contributions to the phonon self energies. The calculations are carried out for an orientationally ordered reference solid with symmetry Fm3ˉmFm \bar{3} m and for a model with quenched orientational disorder on the fullerene sites. In both cases, the dispersion and symmetry of the renormalized modes is governed by the electronic contributions. The current current correlation functions and frequency dependent conductivity through the midinfrared are calculated for both models. In the disordered structures, the renormalized modes derived from even parity intramolecular phonons are resonant with the dipole excited single particle spectrum, and modulate the predicted midinfrared conductivity. The spectra for this coupled system are calculated for several recently proposed microscopic models for the electron phonon coupling, and a comparison is made with recent experimental data which demonstrate this effect.Comment: 32 pages + 9 postscript figures (on request), REVTeX 3.

    Electronic interactions in fullerene spheres

    Get PDF
    The electron-phonon and Coulomb interactions inC60_{60}, and larger fullerene spheres are analyzed. The coupling between electrons and intramolecular vibrations give corrections 110\sim 1 - 10 meV to the electronic energies for C60_{60}, and scales as R4R^{-4} in larger molecules. The energies associated with electrostatic interactions are of order 14\sim 1 - 4 eV, in C60_{60} and scale as R1R^{-1}. Charged fullerenes show enhanced electron-phonon coupling, 10\sim 10 meV, which scales as R2R^{-2}. Finally, it is argued that non only C60_{60}^{-}, but also C60_{60}^{--} are highly polarizable molecules. The polarizabilities scale as R3R^3 and R4R^4, respectively. The role of this large polarizability in mediating intermolecular interactions is also discussed.Comment: 12 pages. No figure

    In-Situ Infrared Transmission Study of Rb- and K-Doped Fullerenes

    Full text link
    We have measured the four IR active C60C_{60} molecular vibrations in MxC60M_{x}C_{60} (M=K,Rb)(M = K, Rb) as a function of doping xx. We observe discontinuous changes in the vibrational spectra showing four distinct phases (presumably x=0,3,4x = 0, 3, 4, and 6). The 1427cm11427cm^{-1} and 576cm1576cm^{-1} modes show the largest changes shifting downward in frequency in four steps as the doping increases. Several new very weak modes are visible in the x=6x=6 phase and are possibly Raman modes becoming weakly optically active. We present quantitative fits of the data and calculate the electron-phonon coupling of the 1427cm11427cm^{-1} IR mode.Comment: 3 pages, Figure 1 included, 3 more figures available by request. REVTEX v3.0 IRC60DO

    Energy gap in superconducting fullerides: optical and tunneling studies

    Full text link
    Tunneling and optical transmission studies have been performed on superconducting samples of Rb3C60. At temperatures much below the superconducting transition temperature Tc the energy gap is 2 Delta=5.2 +- 0.2meV, corresponding to 2 Delta/kB Tc = 4.2. The low temperature density of states, and the temperature dependence of the optical conductivity resembles the BCS behavior, although there is an enhanced ``normal state" contribution. The results indicate that this fulleride material is an s-wave superconductor, but the superconductivity cannot be described in the weak coupling limit.Comment: RevTex file with four .EPS figures. Prints to four pages. Also available at http://buckminster.physics.sunysb.edu/papers/pubrece.htm

    Nonperturbative approach to the Hubbard model in C60 cluster

    Full text link
    We propose a computational scheme for the Hubbard model in the C60 cluster in which the interaction with the Fermi sea of charges added to the neutral molecule is switched on sequentially. This is applied to the calculation of the balance of charging energies, within a low-energy truncation of the space of states which produces moderate errors for an intermediate range of the interaction strength.Comment: 5 pages, Revtex, 2 figure

    DNA fragility in the parallel evolution of pelvic reduction in stickleback fish

    Get PDF
    Evolution generates a remarkable breadth of living forms, but many traits evolve repeatedly, by mechanisms that are still poorly understood. A classic example of repeated evolution is the loss of pelvic hindfins in stickleback fish (Gasterosteus aculeatus). Repeated pelvic loss maps to recurrent deletions of a pelvic enhancer of the Pitx1 gene. Here, we identify molecular features contributing to these recurrent deletions. Pitx1 enhancer sequences form alternative DNA structures in vitro and increase double-strand breaks and deletions in vivo. Enhancer mutability depends on DNA replication direction and is caused by TG-dinucleotide repeats. Modeling shows that elevated mutation rates can influence evolution under demographic conditions relevant for sticklebacks and humans. DNA fragility may thus help explain why the same loci are often used repeatedly during parallel adaptive evolution

    Predicting evolution and visualizing high-dimensional fitness landscapes

    Full text link
    The tempo and mode of an adaptive process is strongly determined by the structure of the fitness landscape that underlies it. In order to be able to predict evolutionary outcomes (even on the short term), we must know more about the nature of realistic fitness landscapes than we do today. For example, in order to know whether evolution is predominantly taking paths that move upwards in fitness and along neutral ridges, or else entails a significant number of valley crossings, we need to be able to visualize these landscapes: we must determine whether there are peaks in the landscape, where these peaks are located with respect to one another, and whether evolutionary paths can connect them. This is a difficult task because genetic fitness landscapes (as opposed to those based on traits) are high-dimensional, and tools for visualizing such landscapes are lacking. In this contribution, we focus on the predictability of evolution on rugged genetic fitness landscapes, and determine that peaks in such landscapes are highly clustered: high peaks are predominantly close to other high peaks. As a consequence, the valleys separating such peaks are shallow and narrow, such that evolutionary trajectories towards the highest peak in the landscape can be achieved via a series of valley crossingsComment: 12 pages, 7 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (A. Engelbrecht and H. Richter, eds.). Springer Series in Emergence, Complexity, and Computation, 201
    corecore