290 research outputs found

    BAMBI Is Expressed in Endothelial Cells and Is Regulated by Lysosomal/Autolysosomal Degradation

    Get PDF
    BACKGROUND: BAMBI (BMP and Activin Membrane Bound Inhibitor) is considered to influence TGFβ and Wnt signaling, and thereby fibrosis. Surprisingly data on cell type-specific expression of BAMBI are not available. We therefore examined the localization, gene regulation, and protein turnover of BAMBI in kidneys. METHODOLOGY/PRINCIPAL FINDINGS: By immunofluorescence microscopy and by mRNA expression, BAMBI is restricted to endothelial cells of the glomerular and some peritubular capillaries and of arteries and veins in both murine and human kidneys. TGFβ upregulated mRNA of BAMBI in murine glomerular endothelial cells (mGEC). LPS did not downregulate mRNA for BAMBI in mGEC or in HUVECs. BAMBI mRNA had a half-life of only 60 minutes and was stabilized by cycloheximide, indicating post-transcriptional regulation due to AU-rich elements, which we identified in the 3' untranslated sequence of both the human and murine BAMBI gene. BAMBI protein turnover was studied in HUVECs with BAMBI overexpression using a lentiviral system. Serum starvation as an inducer of autophagy caused marked BAMBI degradation, which could be totally prevented by inhibition of lysosomal and autolysosomal degradation with bafilomycin, and partially by inhibition of autophagy with 3-methyladenine, but not by proteasomal inhibitors. Rapamycin activates autophagy by inhibiting TOR, and resulted in BAMBI protein degradation. Both serum starvation and rapamycin increased the conversion of the autophagy marker LC3 from LC3-I to LC3-II and also enhanced co-staining for BAMBI and LC3 in autolysosomal vesicles. CONCLUSIONS/SIGNIFICANCE: 1. BAMBI localizes to endothelial cells in the kidney and to HUVECs. 2. BAMBI mRNA is regulated by post-transcriptional mechanisms. 3. BAMBI protein is regulated by lysosomal and autolysosomal degradation. The endothelial localization and the quick turnover of BAMBI may indicate novel, yet to be defined functions of this modulator for TGFβ and Wnt protein actions in the renal vascular endothelium in health and disease

    Association of TGFβ1, TNFα, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians

    Get PDF
    BACKGROUND: Cytokines play an important role in the development of diabetic chronic renal insufficiency (CRI). Transforming growth factor β1 (TGF β1) induces renal hypertrophy and fibrosis, and cytokines like tumor necrosis factor-alpha (TNFα), chemoattractant protein-1 (MCP-1), and regulated upon activation and normal T cell expressed and secreted (RANTES) mediate macrophage infiltration into kidney. Over expression of these chemokines leads to glomerulosclerosis and interstitial fibrosis. The effect of MCP-1 and RANTES on kidney is conferred by their receptors i.e., chemokine receptor (CCR)-2 and CCR-5 respectively. We tested association of nine single nucleotide polymorphisms (SNPs) from TGFβ1, TNFα, CCR2 and CCR5 genes among individuals with type-2 diabetes with and without renal insufficiency. METHODS: Type-2 diabetes subjects with chronic renal insufficiency (serum creatinine ≥ 3.0 mg/dl) constituted the cases, and matched individuals with diabetes of duration ≥ 10 years and normoalbuminuria were evaluated as controls from four centres in India. Allelic and genotypic contributions of nine SNPs from TGFβ1, TNFα, CCR2 and CCR5 genes to diabetic CRI were tested by computing odds ratio (OR) and 95% confidence intervals (CI). Sub-analysis of CRI cases diabetic retinopathy status as dependent variable and SNP genotypes as independent variable in a univariate logistic regression was also performed. RESULTS: SNPs Tyr81His and Thr263Ile in TGF β1 gene were monomorphic, and Arg25Pro in TGF β1 gene and Δ32 polymorphism in CCR5 gene were minor variants (minor allele frequency <0.05) and therefore were not considered for case-control analysis. A significant allelic association of 59029G>A SNP of CCR5 gene has been observed and the allele 59029A seems to confer predisposition to development of diabetic CRI (OR 1.39; CI 1.04–1.84). In CRI subjects a compound group of genotypes "GA and AA" of SNP G>A -800 was found to confer predisposition for proliferative retinopathy (OR 3.03; CI 1.08–8.50, p = 0.035). CONCLUSION: Of the various cytokine gene polymorphisms tested, allele 59029A of CCR5 gene is significantly associated with diabetic renal insufficiency among Asian Indians. Result obtained for 59029G>A SNP of CCR5 gene is in conformity with reports from a Japanese population but due to sub-optimal power of the sample, replication in larger sample set is warranted

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Receptor-Induced Dilatation in the Systemic and Intrarenal Adaptation to Pregnancy in Rats

    Get PDF
    Normal pregnancy is associated with systemic and intrarenal vasodilatation resulting in an increased glomerular filtration rate. This adaptive response occurs in spite of elevated circulating levels of angiotensin II (Ang II). In the present study, we evaluated the potential mechanisms responsible for this adaptation. The reactivity of the mesangial cells (MCs) cultured from 14-day-pregnant rats to Ang II was measured through changes in the intracellular calcium concentration ([Cai]). The expression levels of inducible nitric oxide synthase (iNOS), the Ang II-induced vasodilatation receptor AT2, and the relaxin (LGR7) receptor were evaluated in cultured MCs and in the aorta, renal artery and kidney cortex by real time-PCR. The intrarenal distribution of LGR7 was further analyzed by immunohistochemistry. The MCs displayed a relative insensitivity to Ang II, which was paralleled by an impressive increase in the expression level of iNOS, AT2 and LGR7. These results suggest that the MCs also adapt to the pregnancy, thereby contributing to the maintenance of the glomerular surface area even in the presence of high levels of Ang II. The mRNA expression levels of AT2 and LGR7 also increased in the aorta, renal artery and kidney of the pregnant animals, whereas the expression of the AT1 did not significantly change. This further suggests a role of these vasodilatation-induced receptors in the systemic and intrarenal adaptation during pregnancy. LGR7 was localized in the glomeruli and on the apical membrane of the tubular cells, with stronger labeling in the kidneys of pregnant rats. These results suggest a role of iNOS, AT2, and LGR7 in the systemic vasodilatation and intrarenal adaptation to pregnancy and also suggest a pivotal role for relaxin in the tubular function during gestation

    Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17

    Get PDF
    Carbonic anhydrase IX (CA IX) is a transmembrane protein whose expression is strongly induced by hypoxia in a broad spectrum of human tumours. It is a highly active enzyme functionally involved in both pH control and cell adhesion. Its presence in tumours usually indicates poor prognosis. Ectodomain of CA IX is detectable in the culture medium and body fluids of cancer patients, but the mechanism of its shedding has not been thoroughly investigated. Here, we analysed several cell lines with natural and ectopic expression of CA IX to show that its ectodomain release is sensitive to metalloprotease inhibitor batimastat (BB-94) and that hypoxia maintains the normal rate of basal shedding, thus leading to concomitant increase in cell-associated and extracellular CA IX levels. Using CHO-M2 cells defective in shedding, we demonstrated that the basal CA IX ectodomain release does not require a functional TNFα-converting enzyme (TACE/ADAM17), whereas the activation of CA IX shedding by both phorbol-12-myristate-13-acetate and pervanadate is TACE-dependent. Our results suggest that the cleavage of CA IX ectodomain is a regulated process that responds to physiological factors and signal transduction stimuli and may therefore contribute to adaptive changes in the protein composition of tumour cells and their microenvironment

    Unlike for Human Monocytes after LPS Activation, Release of TNF-α by THP-1 Cells Is Produced by a TACE Catalytically Different from Constitutive TACE

    Get PDF
    Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine today identified as a key mediator of several chronic inflammatory diseases. TNF-α, initially synthesized as a membrane-anchored precursor (pro-TNF-α), is processed by proteolytic cleavage to generate the secreted mature form. TNF-α converting enzyme (TACE) is currently the first and single protease described as responsible for the inducible release of soluble TNF-α.Here, we demonstrated the presence on THP-1 cells as on human monocytes of a constitutive proteolytical activity able to cleave pro-TNF-α. Revelation of the cell surface TACE protein expression confirmed that the observed catalytic activity is due to TACE. However, further studies using effective and innovative TNF-α inhibitors, as well as a highly selective TACE inhibitor, support the presence of a catalytically different sheddase activity on LPS activated THP-1 cells. It appears that this catalytically different TACE protease activity might have a significant contribution to TNF-α release in LPS activated THP-1 cells, by contrast to human monocytes where the TACE activity remains catalytically unchanged even after LPS activation.On the surface of LPS activated THP-1 cells we identified a releasing TNF-α activity, catalytically different from the sheddase activity observed on human monocytes from healthy donors. This catalytically-modified TACE activity is different from the constitutive shedding activity and appears only upon stimulation by LPS

    BAMBI Regulates Angiogenesis and Endothelial Homeostasis through Modulation of Alternative TGFβ Signaling

    Get PDF
    BACKGROUND: BAMBI is a type I TGFβ receptor antagonist, whose in vivo function remains unclear, as BAMBI(-/-) mice lack an obvious phenotype. METHODOLOGY/PRINCIPAL FINDINGS: Identifying BAMBI's functions requires identification of cell-specific expression of BAMBI. By immunohistology we found BAMBI expression restricted to endothelial cells and by electron microscopy BAMBI(-/-) mice showed prominent and swollen endothelial cells in myocardial and glomerular capillaries. In endothelial cells over-expression of BAMBI reduced, whereas knock-down enhanced capillary growth and migration in response to TGFβ. In vivo angiogenesis was enhanced in matrigel implants and in glomerular hypertrophy after unilateral nephrectomy in BAMBI(-/-) compared to BAMBI(+/+) mice consistent with an endothelial phenotype for BAMBI(-/-) mice. BAMBI's mechanism of action in endothelial cells was examined by canonical and alternative TGFβ signaling in HUVEC with over-expression or knock-down of BAMBI. BAMBI knockdown enhanced basal and TGFβ stimulated SMAD1/5 and ERK1/2 phosphorylation, while over-expression prevented both. CONCLUSIONS/SIGNIFICANCE: Thus we provide a first description of a vascular phenotype for BAMBI(-/-) mice, and provide in vitro and in vivo evidence that BAMBI contributes to endothelial and vascular homeostasis. Further, we demonstrate that in endothelial cells BAMBI interferes with alternative TGFβ signaling, most likely through the ALK 1 receptor, which may explain the phenotype observed in BAMBI(-/-) mice. This newly described role for BAMBI in regulating endothelial function has potential implications for understanding and treating vascular disease and tumor neo-angiogenesis

    Juxtamembrane Shedding of Plasmodium falciparum AMA1 Is Sequence Independent and Essential, and Helps Evade Invasion-Inhibitory Antibodies

    Get PDF
    The malarial life cycle involves repeated rounds of intraerythrocytic replication interspersed by host cell rupture which releases merozoites that rapidly invade fresh erythrocytes. Apical membrane antigen-1 (AMA1) is a merozoite protein that plays a critical role in invasion. Antibodies against AMA1 prevent invasion and can protect against malaria in vivo, so AMA1 is of interest as a malaria vaccine candidate. AMA1 is efficiently shed from the invading parasite surface, predominantly through juxtamembrane cleavage by a membrane-bound protease called SUB2, but also by limited intramembrane cleavage. We have investigated the structural requirements for shedding of Plasmodium falciparum AMA1 (PfAMA1), and the consequences of its inhibition. Mutagenesis of the intramembrane cleavage site by targeted homologous recombination abolished intramembrane cleavage with no effect on parasite viability in vitro. Examination of PfSUB2-mediated shedding of episomally-expressed PfAMA1 revealed that the position of cleavage is determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site block shedding, and parasites expressing these non-cleavable forms of PfAMA1 on a background of expression of the wild type gene invade and replicate normally in vitro. The non-cleavable PfAMA1 is also functional in invasion. However – in contrast to the intramembrane cleavage site - mutations that block PfSUB2-mediated shedding could not be stably introduced into the genomic pfama1 locus, indicating that some shedding of PfAMA1 by PfSUB2 is essential. Remarkably, parasites expressing shedding-resistant forms of PfAMA1 exhibit enhanced sensitivity to antibody-mediated inhibition of invasion. Drugs that inhibit PfSUB2 activity should block parasite replication and may also enhance the efficacy of vaccines based on AMA1 and other merozoite surface proteins

    Identification of a Putative Network of Actin-Associated Cytoskeletal Proteins in Glomerular Podocytes Defined by Co-Purified mRNAs

    Get PDF
    The glomerular podocyte is a highly specialized and polarized kidney cell type that contains major processes and foot processes that extend from the cell body. Foot processes from adjacent podocytes form interdigitations with those of adjacent cells, thereby creating an essential intercellular junctional domain of the renal filtration barrier known as the slit diaphragm. Interesting parallels have been drawn between the slit diaphragm and other sites of cell-cell contact by polarized cells. Notably mutations in several genes encoding proteins localized to the foot processes can lead to proteinuria and kidney failure. Mutations in the Wilm's tumor gene (WT1) can also lead to kidney disease and one isoform of WT1, WT1(+KTS), has been proposed to regulate gene expression post-transcriptionally. We originally sought to identify mRNAs associated with WT1(+KTS) through an RNA immunoprecipitation and microarray approach, hypothesizing that the proteins encoded by these mRNAs might be important for podocyte morphology and function. We identified a subset of mRNAs that were remarkably enriched for transcripts encoding actin-binding proteins and other cytoskeletal proteins including several that are localized at or near the slit diaphragm. Interestingly, these mRNAs included those of α-actinin-4 and non-muscle myosin IIA that are mutated in genetic forms of kidney disease. However, isolation of the mRNAs occurred independently of the expression of WT1, suggesting that the identified mRNAs were serendipitously co-purified on the basis of co-association in a common subcellular fraction. Mass spectroscopy revealed that other components of the actin cytoskeleton co-purified with these mRNAs, namely actin, tubulin, and elongation factor 1α. We propose that these mRNAs encode a number of proteins that comprise a highly specialized protein interactome underlying the slit diaphragm. Collectively, these gene products and their interactions may prove to be important for the structural integrity of the actin cytoskeleton in podocytes as well as other polarized cell types
    • …
    corecore