980 research outputs found

    Nephrin AKTs on actin: The slit diaphragm–actin cytoskeleton signaling network expands

    Get PDF
    Regulation and maintenance of the actin cytoskeleton of podocytes has emerged as a critical process for preserving glomerular permselectivity. Signaling through nephrin, a crucial component of the slit diaphragm, can lead to rearrangement of the actin cytoskeleton. Zhu et al. identify phosphoinositide 3-kinase-dependent activation of Akt and Rac as mediators of nephrin-induced actin reorganization, expanding the signaling network linking two of the podocyte's unique structures, its actin cytoskeleton and the slit diaphragm

    Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge

    Get PDF
    Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Expansion of the mesangial matrix in diabetes occurs after prolonged exposure to the diabetic milieu. To mimic the long-term hyperglycemia of diabetes mellitus we developed tissue culture systems that might approximate the chronic state. This was accomplished in two ways: (1) by growing mesangial cells on extracellular matrix glycated and crosslinked in vitro and (2) by continuously growing cells on their own matrix on filters in elevated glucose medium (500 mg/dl) for up to eight weeks without passage. Synthesis of collagen and proteoglycans was evaluated in cells grown under these conditions. In both these situations, 3H-proline incorporation into collagenase sensitive protein and 35S incorporation into sulfated proteins were reduced compared to control cultures. Despite reduction in 35S incorporation into proteoglycans in the high glucose cultures, total glycosaminoglycan content was unchanged. However, proteoglycans generated by mesangial cells grown in elevated glucose media were of a lower negative charge than controls. In mesangial cells continuously grown on filters, the levels of messenger RNA for collagen types I and IV, biglycan and TGF-β were not different in cells grown at elevated or standard glucose concentrations for two and four weeks. We conclude that crosslinking of mesangial matrix or continuous culture of cells for prolonged periods of time in high glucose medium, which may also crosslink matrix, suppresses collagen synthesis and reduces the negative charges on matrix proteoglycans without altering mRNA levels

    腎メサンギウム細胞の免疫学的側面

    Get PDF
    Article信州医学雑誌 40(2): 159-167(1992)journal articl

    BAMBI Is Expressed in Endothelial Cells and Is Regulated by Lysosomal/Autolysosomal Degradation

    Get PDF
    BACKGROUND: BAMBI (BMP and Activin Membrane Bound Inhibitor) is considered to influence TGFβ and Wnt signaling, and thereby fibrosis. Surprisingly data on cell type-specific expression of BAMBI are not available. We therefore examined the localization, gene regulation, and protein turnover of BAMBI in kidneys. METHODOLOGY/PRINCIPAL FINDINGS: By immunofluorescence microscopy and by mRNA expression, BAMBI is restricted to endothelial cells of the glomerular and some peritubular capillaries and of arteries and veins in both murine and human kidneys. TGFβ upregulated mRNA of BAMBI in murine glomerular endothelial cells (mGEC). LPS did not downregulate mRNA for BAMBI in mGEC or in HUVECs. BAMBI mRNA had a half-life of only 60 minutes and was stabilized by cycloheximide, indicating post-transcriptional regulation due to AU-rich elements, which we identified in the 3' untranslated sequence of both the human and murine BAMBI gene. BAMBI protein turnover was studied in HUVECs with BAMBI overexpression using a lentiviral system. Serum starvation as an inducer of autophagy caused marked BAMBI degradation, which could be totally prevented by inhibition of lysosomal and autolysosomal degradation with bafilomycin, and partially by inhibition of autophagy with 3-methyladenine, but not by proteasomal inhibitors. Rapamycin activates autophagy by inhibiting TOR, and resulted in BAMBI protein degradation. Both serum starvation and rapamycin increased the conversion of the autophagy marker LC3 from LC3-I to LC3-II and also enhanced co-staining for BAMBI and LC3 in autolysosomal vesicles. CONCLUSIONS/SIGNIFICANCE: 1. BAMBI localizes to endothelial cells in the kidney and to HUVECs. 2. BAMBI mRNA is regulated by post-transcriptional mechanisms. 3. BAMBI protein is regulated by lysosomal and autolysosomal degradation. The endothelial localization and the quick turnover of BAMBI may indicate novel, yet to be defined functions of this modulator for TGFβ and Wnt protein actions in the renal vascular endothelium in health and disease

    The Study of the Inhibition of the Recombinant TACE Prodomain to Endotoxemia in Mice

    Get PDF
    Objective: To demonstrate the inhibitory function of the prodomain of tumor necrosis factor-α (TNF-α) converting enzyme (TACE) on TACE activity and to develop an approach to interfere with inflammation processes. Methods: The cDNA encoding the fulllength ectodomain (T1300) and prodomain (T591) of TACE were amplified by RT-PCR. The expression plasmids (pET-28a (+)-T1300 and pET-28a (+)-T591) were constructed and transformed into E. coli BL21. After Ni2+-NTA resin affinity chromatography, the recombinant T591 protein was obtained and assayed. In order to detect its inhibiton of TACE activity, the mice in the LPS-induced endotoxemia model group were treated with the recombinant TACE prodomain protein prior to the injection of LPS. Murine peritoneal macrophages were isolated from mice abdominal cavity for FCM and the liver, kidney and lung were removed for traditionally histopathology sectioning. Results: The FCM results showed that the recombinant prodomain protein decreased the release of the sTNF-α, which mediated the accumulation of TNF-α on the surface of macrophage cells. HE staining proved that the recombinant protein can decrease the inflammatory response in internal organs of endotoxaemia mice. Conclusions: The recombinant prodomain of TACE has the ability to inhibit sTNF-α release, which indicates that prodomain is an effective antagonist of TACE and might be useful in the molecular design of anti-inflammatory drugs

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Vasoactive agents affect growth and protein synthesis of cultured rat mesangial cells

    Get PDF
    Vasoactive agents affect growth and protein synthesis of cultured rat mesangial cells. Mesangial cell (MC) proliferation and extracellular matrix (ECM) formation are hallmarks of chronic glomerular disease. The present in vitro study examined the effects of the vasoactive agents angiotensin II (Ang II), arginine vasopressin (AVP), and serotonin (5-HT) on growth and protein biosynthesis of cultured rat MCs after 72 hours of incubation. AVP and 5-HT (10-6 M) significantly increased DNA synthesis and growth of quiescent subconfluent MCs to levels of 25 and 45%, respectively, of the optimal stimulatory effect of 10% fetal calf serum (FCS) (both P < 0.001). The mitogenic effect of Ang II was 10% of the 10% FCS effect (P < 0.01). ECM production was studied by ELISA assay for fibronectin (FN) secreted into the culture medium (SeFN) and cell-associated FN, that is, intra- and pericellular FN (CaFN). In all incubations, highly significant negative linear relationships were found between the numbers of MCs per well and quantities of both SeFN and CaFN after normalization of the data by logarithmic transformation (SeFN: r values > -0.9705; CaFN: r < -0.9620; P < 0.001). Thus, increasing cell densities progressively suppressed ECM formation by MCs. The ECM production was found to be independent of growth activity. AVP significantly increased SeFN (P < 0.05) and decreased CaFN (P < 0.001) in subconfluent cultures; Ang II and 5-HT had no effect. Metabolic labeling with 35S-methionine (18 hr, 200 µCi/ml medium) and 2-D electrophoresis of MC lysates resulted in resolution of >500 different radiolabeled intracellular proteins in molecular weight from 110 to 20 Kd over an isoelectric interval of 5.0 to 7.0. Computerized video densitometry and scintillation counting of excised spots revealed prominent upregulation of 10 different MC proteins in response to AVP, and enhanced expression of five proteins in response to 5-HT, events characteristic of cellular activation. Ang II caused weakly increased expression of only one protein. The stimulatory effects of AVP and 5-HT on growth and protein synthesis of MCs in-vitro imply a possible in vivo role for these factors in glomerular disease
    corecore