62 research outputs found

    Modulation by steroid hormones of a "sexy" acoustic signal in an Oscine species, the Common Canary Serinus canaria

    Get PDF
    The respective influence of testosterone and estradiol on the structure of the Common Canary Serinus canaria song was studied by experimentally controlling blood levels of steroid hormones in males and analyzing the consequent effects on acoustic parameters. A detailed acoustic analysis of the songs produced before and after hormonal manipulation revealed that testosterone and estradiol seem to control distinct song parameters independently. The presence of receptors for testosterone and estradiol in the brain neural pathway controlling song production strongly suggests that the observed effects are mediated by a steroid action at the neuronal level.<br>A influência da testosterona e do estradiol, respectivamente, na estrutura do canto do Canário-do-reino Serinus canaria foi estudada analisando o efeito da manipulação dos níveis sanguíneos de hormônios esteróides em machos nos parâmetros acústicos do canto. Uma analise detalhada dos cantos produzidos antes e depois da manipulação hormonal revelou que testosterona e estradiol parecem controlar independentemente parâmetros acústicos distintos. A presença de receptores para esses hormônios no circuito neuronal para controle da produção do canto sugere fortemente que os efeitos observados são mediados pela ação de esteróides a nivel neuronal

    Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17β-HSD type 4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroids affect many tissues, including the brain. In the zebra finch, the estrogenic steroid estradiol (E<sub>2</sub>) is especially effective at promoting growth of the neural circuit specialized for song. In this species, only the males sing and they have a much larger and more interconnected song circuit than females. Thus, it was surprising that the gene for 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4), an enzyme that converts E<sub>2 </sub>to a less potent estrogen, had been mapped to the Z sex chromosome. As a consequence, it was likely that HSD17B4 was differentially expressed in males (ZZ) and females (ZW) because dosage compensation of Z chromosome genes is incomplete in birds. If a higher abundance of HSD17B4 mRNA in males than females was translated into functional enzyme in the brain, then contrary to expectation, males could produce less E<sub>2 </sub>in their brains than females.</p> <p>Results</p> <p>Here, we used molecular and biochemical techniques to confirm the HSD17B4 Z chromosome location in the zebra finch and to determine that HSD17B4 mRNA and activity were detectable in the early developing and adult brain. As expected, HSD17B4 mRNA expression levels were higher in males compared to females. This provides further evidence of the incomplete Z chromosome inactivation mechanisms in birds. We detected HSD17B4 mRNA in regions that suggested a role for this enzyme in the early organization and adult function of song nuclei. We did not, however, detect significant sex differences in HSD17B4 activity levels in the adult brain.</p> <p>Conclusions</p> <p>Our results demonstrate that the HSD17B4 gene is expressed and active in the zebra finch brain as an E<sub>2 </sub>metabolizing enzyme, but that dosage compensation of this Z-linked gene may occur via post-transcriptional mechanisms.</p

    Genomic and neural analysis of the estradiol-synthetic pathway in the zebra finch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroids are small molecule hormones derived from cholesterol. Steroids affect many tissues, including the brain. In the zebra finch, estrogenic steroids are particularly interesting because they masculinize the neural circuit that controls singing and their synthesis in the brain is modulated by experience. Here, we analyzed the zebra finch genome assembly to assess the content, conservation, and organization of genes that code for components of the estrogen-synthetic pathway and steroid nuclear receptors. Based on these analyses, we also investigated neural expression of a cholesterol transport protein gene in the context of song neurobiology.</p> <p>Results</p> <p>We present sequence-based analysis of twenty steroid-related genes using the genome assembly and other resources. Generally, zebra finch genes showed high homology to genes in other species. The diversity of steroidogenic enzymes and receptors may be lower in songbirds than in mammals; we were unable to identify all known mammalian isoforms of the 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase families in the zebra finch genome assembly, and not all splice sites described in mammals were identified in the corresponding zebra finch genes. We did identify two factors, Nobox and NR1H2-RXR, that may be important for coordinated transcription of multiple steroid-related genes. We found very little qualitative overlap in predicted transcription factor binding sites in the genes for two cholesterol transport proteins, the 18 kDa cholesterol transport protein (TSPO) and steroidogenic acute regulatory protein (StAR). We therefore performed in situ hybridization for TSPO and found that its mRNA was not always detected in brain regions where StAR and steroidogenic enzymes were previously shown to be expressed. Also, transcription of TSPO, but not StAR, may be regulated by the experience of hearing song.</p> <p>Conclusions</p> <p>The genes required for estradiol synthesis and action are represented in the zebra finch genome assembly, though the complement of steroidogenic genes may be smaller in birds than in mammals. Coordinated transcription of multiple steroidogenic genes is possible, but results were inconsistent with the hypothesis that StAR and TSPO mRNAs are co-regulated. Integration of genomic and neuroanatomical analyses will continue to provide insights into the evolution and function of steroidogenesis in the songbird brain.</p

    Pollutants Increase Song Complexity and the Volume of the Brain Area HVC in a Songbird

    Get PDF
    Environmental pollutants which alter endocrine function are now known to decrease vertebrate reproductive success. There is considerable evidence for endocrine disruption from aquatic ecosystems, but knowledge is lacking with regard to the interface between terrestrial and aquatic ecosystems. Here, we show for the first time that birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour. We found that male European starlings (Sturnus vulgaris) exposed to environmentally relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to control males, a sexually selected trait important in attracting females for reproduction. Moreover, females preferred the song of males which had higher pollutant exposure, despite the fact that experimentally dosed males showed reduced immune function. We also show that the key brain area controlling male song complexity (HVC) is significantly enlarged in the contaminated birds. This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song. Our data suggest that female starlings would bias their choice towards exposed males, with possible consequences at the population level. As the starling is a migratory species, our results suggest that transglobal effects of pollutants on terrestrial vertebrate physiology and reproduction could occur in birds

    Seasonal changes in patterns of gene expression in avian song control brain regions.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity

    Organizing Effects of Sex Steroids on Brain Aromatase Activity in Quail

    Get PDF
    Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first experiment we measured AA in brain regions micropunched in adult male and female Japanese quail utilizing the novel strategy of basing the microdissections on the distribution of aromatase-immunoreactive cells. The largest sex difference was found in the medial bed nucleus of the stria terminalis (mBST) followed by the medial preoptic nucleus (POM) and the tuberal hypothalamic region. A second experiment tested the effect of embryonic treatments known to sex-reverse male copulatory behavior (i.e., estradiol benzoate [EB] or the aromatase inhibitor, Vorozole) on brain AA in gonadectomized adult males and females chronically treated as adults with testosterone. Embryonic EB demasculinized male copulatory behavior, while vorozole blocked demasculinization of behavior in females as previously demonstrated in birds. Interestingly, these treatments did not affect a measure of appetitive sexual behavior. In parallel, embryonic vorozole increased, while EB decreased AA in pooled POM and mBST, but the same effect was observed in both sexes. Together, these data indicate that the early action of estrogens demasculinizes AA. However, this organizational action of estrogens on AA does not explain the behavioral sex difference in copulatory behavior since AA is similar in testosterone-treated males and females that were or were not exposed to embryonic treatments with estrogens

    Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches (Taeniopygia guttata)

    Get PDF
    Abstract Background Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches ( Taeniopygia guttata ) under three environmental conditions differing in social complexity during adolescence\ua0-\ua0juvenile pairs, juvenile groups, and mixed-age groups - and studied males\u2019 behavioural, endocrine, and morphological maturation, and later their adult behaviour. Results As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment. Conclusion Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe
    corecore